Skip to main content

Advertisement

Log in

Pure and simple: investigating the in-plane shear kinematics of a quasi-unidirectional glass fiber non-crimp fabric using the bias-extension test

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

This paper concerns shear testing of a quasi-unidirectional non-crimp fabric used for wind turbine blades. In this context “quasi” refers to the fact that the majority of the reinforcement is oriented along the longitudinal direction with a small amount acting as a stabilizing backing layer in the ± 80 direction. The bias-extension test is used to investigate the in-plane shear kinematics of the fabric, i.e. whether a pure or simple shear kinematic is more suitable. Further, an expected outcome of the test is a maximum applicable shear angle. Such information is highly important when simulating the draping of the fabrics in a blade mold. The investigation shows that the fabric deforms mostly in pure shear for the shear angles relevant for wind turbine blade production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of Data

The data that support the findings of this study are mostly available within the article but can be shared by the corresponding author upon request.

Code Availability

The mathematical basis for the computer code developed as part of the data processing is well documented in the article.

References

  1. Bel S, Boisse P, Dumont F (2012a) Analyses of the deformation mechanisms of non-crimp fabric composite reinforcements during preforming. Appl Compos Mater 19(3-4):513–528. https://doi.org/10.1007/s10443-011-9207-x

    Article  Google Scholar 

  2. Bel S, Hamila N, Boisse P, Dumont F (2012b) Finite element model for NCF composite reinforcement preforming: Importance of inter-ply sliding. Compos A: Appl Sci Manuf 43(12):2269–2277. https://doi.org/10.1016/j.compositesa.2012.08.005

    Article  Google Scholar 

  3. Boisse P, Hamila N, Guzman-Maldonado E, Madeo A, Hivet G, Dell’Isola F (2017) The bias-extension test for the analysis of in-plane shear properties of textile composite reinforcements and prepregs: a review. Int J Mater Form 10(4):473–492. https://doi.org/10.1007/s12289-016-1294-7

    Article  Google Scholar 

  4. Bussetta P, Correia N (2018) Numerical forming of continuous fibre reinforced composite material: A review. Compos A: Appl Sci Manuf 113:12–31. https://doi.org/10.1016/j.compositesa.2018.07.010

    Article  Google Scholar 

  5. Cao J, Akkerman R, Boisse P, Chen J, Cheng HS, de Graaf EF, Gorczyca JL, Harrison P, Hivet G, Launay J, Lee W, Liu L, Lomov SV, Long A, de Luycker E, Morestin F, Padvoiskis J, Peng X, Sherwood JA, Stoilova T, Tao X, Verpoest I, Willems A, Wiggers J, Yu T, Zhu B (2008) Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results. Compos A: Appl Sci Manuf 39(6):1037–1053. https://doi.org/10.1016/j.compositesa.2008.02.016

    Article  Google Scholar 

  6. Dassault Systèmes Simulia Corporation (2014) Abaqus 6.14 Documentation: 23.4.1 Fabric material behavior

  7. Hamila N, Boisse P (2013) Locking in simulation of composite reinforcement deformations. Analysis and treatment. Compos A: Appl Sci Manuf 53:109–117. https://doi.org/10.1016/j.compositesa.2013.06.001

    Article  Google Scholar 

  8. Harrison P, Tan MK, Long A (2005) Kinematics of Intra-Ply Slip in Textile Composites during Bias Extension Tests. 8th Int ESAFORM Conf on Materials Forming 987–990

  9. Harrison P, Alvarez MF, Anderson D (2018a) Towards comprehensive characterisation and modelling of the forming and wrinkling mechanics of engineering fabrics. Int J Solids Struct 154:2–18. https://doi.org/10.1016/j.ijsolstr.2016.11.008

    Article  Google Scholar 

  10. Harrison P, Taylor E, Alsayednoor J (2018b) Improving the accuracy of the uniaxial bias extension test on engineering fabrics using a simple wrinkle mitigation technique. Compos A: Appl Sci Manuf 108:53–61. https://doi.org/10.1016/j.compositesa.2018.02.025

    Article  Google Scholar 

  11. Härtel F, Harrison P (2014) Evaluation of normalisation methods for uniaxial bias extension tests on engineering fabrics. Compos A: Appl Sci Manuf 67:61–69. https://doi.org/10.1016/j.compositesa.2014.08.011

    Article  Google Scholar 

  12. Hivet G, Duong AV (2011) A contribution to the analysis of the intrinsic shear behavior of fabrics. J Compos Mater 45(6):695–716. https://doi.org/10.1177/0021998310382315

    Article  Google Scholar 

  13. Krogh C, Glud JA, Jakobsen J (2019) Modeling the robotic manipulation of woven carbon fiber prepreg plies onto double curved molds: a path-dependent problem. J Compos Mater 53(15):2149–2164. https://doi.org/10.1177/0021998318822722

    Article  Google Scholar 

  14. Krogh C, White KD, Sabato A, Sherwood JA (2020) Picture-frame testing of woven prepreg fabric: an investigation of sample geometry and shear angle acquisition. Int J Mater Form 13(3):341–353. https://doi.org/10.1007/s12289-019-01499-y

    Article  Google Scholar 

  15. Launay J, Hivet G, Duong AV, Boisse P (2008) Experimental analysis of the influence of tensions on in plane shear behaviour of woven composite reinforcements. Compos Sci Technol 68(2):506–515. https://doi.org/10.1016/j.compscitech.2007.06.021

    Article  Google Scholar 

  16. Lebrun G, Bureau MN, Denault J (2003) Evaluation of bias-extension and picture-frame test methods for the measurement of intraply shear properties of PP/glass commingled fabrics. Compos Struct 61 (4):341–352. https://doi.org/10.1016/S0263-8223(03)00057-6

    Article  Google Scholar 

  17. Lim TC, Ramakrishna S (2002) Modelling of composite sheet forming: a review. Compos A: Appl Sci Manuf 33(4):515–537. https://doi.org/10.1016/S1359-835X(01)00138-5

    Article  Google Scholar 

  18. Machado M, Fischlschweiger M, Major Z (2016) A rate-dependent non-orthogonal constitutive model for describing shear behaviour of woven reinforced thermoplastic composites. Compos A: Appl Sci Manuf 80:194–203. https://doi.org/10.1016/j.compositesa.2015.10.028

    Article  Google Scholar 

  19. Pierce RS, Falzon BG, Thompson MC, Boman R (2015) A low-cost digital image correlation technique for characterising the shear deformation of fabrics for draping studies. Strain 51(3):180–189. https://doi.org/10.1111/str.12131

    Article  Google Scholar 

  20. Potluri P, Ciurezu DA, Ramgulam RB (2006) Measurement of meso-scale shear deformations for modelling textile composites. Compos A: Appl Sci Manuf 37(2):303–314. https://doi.org/10.1016/j.compositesa.2005.03.032

    Article  Google Scholar 

  21. Potter KD (2002) Bias extension measurements on cross-plied unidirectional prepreg. Compos A: Appl Sci Manuf 33(1):63–73. https://doi.org/10.1016/S1359-835X(01)00057-4

    Article  Google Scholar 

  22. Pourtier J, Duchamp B, Kowalski M, Wang P, Legrand X, Soulat D (2019) Two-way approach for deformation analysis of non-crimp fabrics in uniaxial bias extension tests based on pure and simple shear assumption. Int J Mater Form 12(6):995–1008. https://doi.org/10.1007/s12289-019-01481-8

    Article  Google Scholar 

  23. Samir D, Hamid S (2014) Determination of the in-plane shear rigidity modulus of a carbon non-crimp fabric from bias-extension data test. J Compos Mater 48(22):2729–2736. https://doi.org/10.1177/0021998313502063

    Article  Google Scholar 

  24. Schirmaier FJ, Weidenmann KA, Kärger L, Henning F (2016) Characterisation of the draping behaviour of unidirectional non-crimp fabrics (UD-NCF). Compos A: Appl Sci Manuf 80:28–38. https://doi.org/10.1016/j.compositesa.2015.10.004

    Article  Google Scholar 

  25. ten Thije RHW, Loendersloot R, Akkerman R (2005) Drape simulation of non-crimp fabrics. In: Proc. 8th int. ESAFORM conf., the publishing house of the romanian academy. Bucharest, Romania, pp 8–11

  26. Trejo EA, Ghazimoradi M, Butcher C, Montesano J (2020) Assessing strain fields in unbalanced unidirectional non-crimp fabrics. Compos A: Appl Sci Manuf 130:105758. https://doi.org/10.1016/j.compositesa.2019.105758

    Article  Google Scholar 

  27. Wang J, Page JR, Paton R (1998) Experimental investigation of the draping properties of reinforcement fabrics. Compos Sci Technol 58(2):229–237. https://doi.org/10.1016/S0266-3538(97)00115-2

    Article  Google Scholar 

  28. Yu X, Cartwright B, McGuckin D, Ye L, Mai YW (2006) Intra-ply shear locking in finite element analyses of woven fabric forming processes. Compos A: Appl Sci Manuf 37(5):790–803. https://doi.org/10.1016/j.compositesa.2005.04.024

    Article  Google Scholar 

Download references

Funding

This study was completed as part of the MADEBLADES research project supported by the Energy Technology Development and Demonstration Program, Grant no. 64019-0514.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Krogh.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krogh, C., Kepler, J.A. & Jakobsen, J. Pure and simple: investigating the in-plane shear kinematics of a quasi-unidirectional glass fiber non-crimp fabric using the bias-extension test. Int J Mater Form 14, 1483–1495 (2021). https://doi.org/10.1007/s12289-021-01642-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-021-01642-8

Keywords

Navigation