Skip to main content
Log in

Local Environment of Superoxide Radical Formed on the TiO2 Surface Produced From Ti(OiPr)4 Exposed to H2O2

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

A selective heterogeneous catalyst with the superoxide anion O2•− stable at room temperature, generated by treating Ti(OR)4 (R = iPr, nBu) with H2O2, was previously reported and used for the oxidation of organic compounds. It was proposed that exceptional stability of the O2•− is resulted from its stabilization near Ti+4 cation on the TiO2 surface with the participation of water molecules and/or OH groups. In this article, we performed high-resolution pulsed EPR study on the O2•− in this catalyst with the aim to obtain quantitative information about its interactions with the surrounding molecules. Our data has shown that the O2•− is involved in weak hyperfine interactions with protons in the nearest environment, which do not exceed a value of 2 MHz. It corresponds to an Os…H distance of  ≥ 3 Å that excludes the formation of hydrogen bonds. The analysis of possible structures of O2•− adsorption on TiO2 surface taking into account our results and lack of radical mobility at room temperature previously observed in EPR spectra led us to suggest that the O2•− is stabilized in the form of superoxo bridge coordinated with two titanium atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Copyright Clearance Center: John Wiley and Sons, Dewkar et al. [10]. Copyright 2001. (center, b) from ref.12. Adapted by permission from Copyright Clearance Center: Springer Nature, Reddy et al. [12]. Copyright 2010. (right, c) this work

Fig. 6

Adapted from Ref. 18 with permission from the PCCP Owner Societies

Similar content being viewed by others

References

  1. M. Hayyan, M.A. Hashim, I.M. AlNashef, Chem. Rev. 116, 3029 (2016)

    Article  Google Scholar 

  2. I.B. Afanas’ev, Russ. Chem. Rev. 48, 527 (1979)

    Article  Google Scholar 

  3. D.T. Sawyer, J.S. Valentine, Acc. Chem. Res. 14, 393 (1981)

    Article  Google Scholar 

  4. M. Anpo, M. Che, B. Fubini, E. Garrone, E. Giamello, M.C. Paganini, Top. Catal. 8, 189 (1999)

    Article  Google Scholar 

  5. M. Che, A.J. Tench, Adv. Catal. 32, 1 (1983)

    Google Scholar 

  6. A.I. Kokorin, in Chemical Physics of Nanostructured semiconductors. ed. by A.I. Kokorin, D.W. Bahnemann (CRC Press, Utrecht-Boston, 2003), p. 203

    Chapter  Google Scholar 

  7. M. Chiesa, E. Giamello, M. Che, Chem. Rev. 110, 1320 (2010)

    Article  Google Scholar 

  8. K. Sobańska, A. Krasowska, T. Mazur, K. Podolska-Serafin, P. Pietrzyk, Z. Sojka, Top. Catal. 58, 796 (2015)

    Article  Google Scholar 

  9. E. Giamello, P. Rumori, F. Geobaldo, B. Fubini, M.C. Paganini, Appl. Magn. Res. 10, 173 (1996)

    Article  Google Scholar 

  10. G.K. Dewkar, M.D. Nikalje, I.A. Sayyed, A.S. Paraskar, H.S. Jagtap, A. Sudalai, Angew. Chem. Int. Ed. 40, 405 (2001)

    Article  Google Scholar 

  11. G.K. Dewkar, T.M. Shaikh, S. Pardhy, S.S. Kulkarni, A. Sudalai, Indian J. Chem. B 44, 1530 (2005)

    Google Scholar 

  12. R.S. Reddy, T.M. Shaikh, V. Rawat, P.U. Karabal, G. Dewkar, G. Suryavanshi, A. Sudalai, Catal. Surv. Asia 14, 21 (2010)

    Google Scholar 

  13. G.K. Dewkar, V.V. Thakur, S.A. Pardhy, A. Sudalai, S. Devotta, Process for conversion of phenol to hydroquinone and quinones. US Patent 6872857. Date of Patent: Mar. 29, 2005

  14. B.C. Benicewicz, S. Kanagasabapathy, A, Sudalai, Transition metal superoxides. US Patent 6765076. Date of Patent: Jul. 20, 2004

  15. P. Höfer, A. Grupp, H. Nebenführ, M. Mehring, Chem. Phys. Lett. 132, 279 (1986)

    Article  ADS  Google Scholar 

  16. E.R. Davies, Phys. Lett. A 47, 1 (1974)

    Article  ADS  Google Scholar 

  17. W.B. Mims, Proc. Roy. Soc. A 283, 452 (1965)

    ADS  Google Scholar 

  18. K.L. Antcliff, D.M. Murphy, E. Griffithsa, E. Giamello, Phys. Chem. Chem. Phys. 5, 4306 (2003)

    Article  Google Scholar 

  19. V. Ramaswamy, P. Awati, A.V. Ramaswamy, Top. Catal. 38, 251 (2006)

    Article  Google Scholar 

  20. P. Tengvall, I. Lundström, L. Sjöqvist, H. Elwing, L.M. Bjursten, Biomaterials 10, 166 (1989)

    Article  Google Scholar 

  21. J. Green, E. Carter, D.M. Murphy, Chem. Phys. Lett. 477, 340 (2009)

    Article  ADS  Google Scholar 

  22. E. Carter, A.F. Carley, D.M. Murphy, J. Phys. Chem. C 111, 10630 (2007)

    Article  Google Scholar 

  23. F. Liu, N. Feng, Q. Wang, J. Xu, G. Qi, W. Wang, F. Deng, J. Am. Chem. Soc. 139, 10020 (2017)

    Article  Google Scholar 

  24. V. Rahemi, S. Trashin, Z. Hafideddine, V. Meynen, S. Van Doorslaer, K. De Wael, Sens. Actuators, B Chem. 283, 343 (2019)

    Article  Google Scholar 

  25. J. Yu, J. Chen, C. Li, X. Wang, B. Zhang, H. Ding, J. Phys. Chem. B 108, 2781 (2004)

    Article  Google Scholar 

  26. S. Maurelli, M. Vishnuvarthan, G. Berlier, M. Chiesa, Phys. Chem. Chem. Phys. 14, 987 (2012)

    Article  Google Scholar 

  27. S.A. Dikanov, M.K. Bowman, J. Magn. Reson. Ser. A 116, 125 (1995)

    Article  ADS  Google Scholar 

  28. F. Napoli, M. Chiesa, E. Giamello, G. Preda, C. Di Valentin, G. Pacchioni, Chem. Eur. J. 16, 6776 (2010)

    Article  Google Scholar 

  29. R.I. Samoilova, A.R. Crofts, S.A. Dikanov, J. Phys. Chem. A 115, 11589 (2011)

    Article  Google Scholar 

  30. D.W. Randall, A. Gelasco, M.T. Caudle, V.L. Pecoraro, R.D. Britt, J. Am. Chem. Soc. 119, 4481 (1997)

    Article  Google Scholar 

  31. I. Janik, G.N.R. Tripathi, J. Chem. Phys. 139, 014302 (2013)

    Article  ADS  Google Scholar 

  32. M. Chiesa, E. Giamello, M.C. Paganini, Z. Sojka, D.M. Murphy, J. Chem. Phys. 116, 4266 (2002)

    Article  ADS  Google Scholar 

  33. P.D.C. Dietzel, R.K. Kremer, M. Jansen, J. Am. Chem. Soc. 126, 4689 (2004)

    Article  Google Scholar 

  34. H. Seyeda, M. Jansen, J. Chem. Soc. Trans. 6, 875 (1998)

    Article  Google Scholar 

  35. F. Halverson, J. Phys. Chem. Solids 23, 207 (1962)

    Article  ADS  Google Scholar 

  36. V.F. Antonchenko, E.S. Kryachko, Chem. Phys. 327, 485 (2006)

    Article  Google Scholar 

  37. V.F. Antonchenko, E.S. Kryachko, J. Phys. Chem. A 109, 3052 (2005)

    Article  Google Scholar 

  38. C.-K. Lin, J. Li, Z. Tu, X. Li, M. Hayashi, S.H. Lin, RSC Adv. 1, 1228 (2011)

    Article  ADS  Google Scholar 

  39. D. Koch, S. Manzhos, J. Phys. Chem. Lett. 8, 1593 (2017)

    Article  Google Scholar 

  40. M.E. Arroyo de Dompablo, A. Morales García, M. Taravillo, J. Chem. Phys. 135, 054503 (2011)

    Article  ADS  Google Scholar 

  41. D.T. Cromer, K. Herrington, J. Am. Chem. Soc. 77, 4708 (1955)

    Article  Google Scholar 

  42. I.S. Ignatyev, M. Montejo, J.J.L. González, J. Phys. Chem. A 111, 7973 (2007)

    Article  Google Scholar 

  43. S. Yin, D.E. Ellis, Phys. Chem. Chem. Phys. 12, 156 (2010)

    Article  ADS  Google Scholar 

  44. D. Wang, L. Zhao, D. Wang, L. Yan, C. Jing, H. Zhang, L.-H. Guo, N. Tang, Phys. Chem. Chem. Phys. 20, 18978 (2018)

    Article  Google Scholar 

  45. Y.-F. Li, A. Selloni, ACS Catal. 6, 4769 (2016)

    Article  Google Scholar 

  46. S. Schlick, L. Kevan, J. Am. Chem. Soc. 102, 4622 (1980)

    Article  Google Scholar 

  47. M. Shiotani, G. Moro, J.H. Freed, J. Chem. Phys. 74, 2616 (1981)

    Article  ADS  Google Scholar 

  48. R.F. Howe, W.C. Timmer, J. Chem. Phys. 85, 6129 (1986)

    Article  ADS  Google Scholar 

  49. A.B.P. Lever, G.A. Ozin, H.B. Gray, Inorg. Chem. 19, 1823 (1980)

    Article  Google Scholar 

  50. E. Morra, A. Budnyk, A. Damin, M. Chiesa, Top. Catal. 61, 1485 (2018)

    Article  Google Scholar 

  51. L.V. Bershov, J. Struct. Chem. 10, 130 (1969)

    Article  Google Scholar 

  52. D.R. Hutton, J.R. Pilbrow, G.J. Troup, J.O. Warne, Aust. J. Phys. 45, 253 (1992)

    Article  ADS  Google Scholar 

  53. V.P. Solntsev, A.M. Yurkin, Cryst. Rep. 45, 128 (2000)

    Article  Google Scholar 

  54. W.C. Zheng, Q. Zhou, X.X. Wu, Y. Mei, Z. Naturforsch. 61, 286 (2006)

    Article  ADS  Google Scholar 

  55. D. Courierand, E. Samuel, J. Am. Chem. Soc. 109, 4571 (1987)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant DE-FG02-08ER15960 (S.A.D.) from the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Sciences, U.S. Department of Energy. The authors are grateful to Dr. Andrei Astashkin (University of Arizona) for help in the preliminary simulations of orientation-selective pulsed ENDOR spectra and very useful discussions. This article is dedicated to Professors Klaus Möbius and Kev M. Salikhov on the occasion of their 85th anniversary. Both of them have done outstanding contributions in the science of magnetic resonance. The authors of this article had the privilege of professional communications with Professor Salikhov as well as friendly discussions at the “coffee club” in the laboratory of Professor Yu. D. Tsvetkov during many years of his and our work in V. V. Voevodsky Institute of Chemical Kinetics and Combustion (Novosibirsk). Later we have always been receiving encouraging support and help from Kev Minullinovich at multiple stages of his multifaceted career.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei A. Dikanov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 737 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samoilova, R.I., Dikanov, S.A. Local Environment of Superoxide Radical Formed on the TiO2 Surface Produced From Ti(OiPr)4 Exposed to H2O2. Appl Magn Reson 53, 1089–1104 (2022). https://doi.org/10.1007/s00723-021-01424-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-021-01424-0

Navigation