Skip to main content
Log in

Investigation of Imitational Modeling Applicability for Aerodynamic Coefficients of Airfoils (Blades)

  • STRUCTURAL MECHANICS AND STRENGTH OF FLIGHT VEHICLES
  • Technical Notes
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

Results of the aerodynamic coefficients imitation of wing airfoils and helicopter blades are presented. The modeling is carried out using the artificial neural network algorithms. The dependencies of the lift coefficient and the drag coefficient on the angle of attack are imitated for various airfoil geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kravets, A.S., Kharakteristiki aviatsionnikh profilei (Airfoil Characteristics), Moscow: Oborongiz, 1939.

    Google Scholar 

  2. Glass, F.G., On the Scale Effect Influence on Dependence of the Profile Drag on the Airfoil Geometry, Trudy TsAGI, 1936, no. 286, p. 44.

    Google Scholar 

  3. Atlas of Aerodynamic Characteristics of Wing Airfoils Tested in the Wind Tunnel T-1 TsAGI, Ed., Ushakov, B.A., Trudy TsAGI, no. 193.

  4. Airfoil Atlas, Trudy TsAGI, no. 99, 1931.

  5. Nugmanov, Z.Kh. and Romanov, V.M., Calculation of Potential Incompressible Flow Around Airfoil and High-Lift Profile Based on the Galerkin Method, Izv. Vuz. Av. Tekhnika, 2001, vol. 44, no. 4, pp. 34–37 [Russian Aeronautics (Engl. Transl.), 2001, vol. 44, no. 4, pp. 50–56].

    Google Scholar 

  6. Il’inskii, N.B. and Neberova, O.S., Zero-moment Airfoil Design by Modification of the Velocity Distribution, Izv. Vuz. Av. Tekhnika, 2004, vol. 47, no. 1, pp. 21–24 [Russian Aeronautics (Engl. Transl.), 2004, vol. 47, no. 1, pp. 31–36].

    Google Scholar 

  7. Elizarov, A.M., Ikhsanova, A.N., and Fokin, D.A., Optimal Aerodynamic Design of Airfoils at the Limitation of Velocity Maximum, Izv. Vuz. Av. Tekhnika, 2004, vol. 47, no. 3, pp. 32–36 [Russian Aeronautics (Engl. Transl.), 2004, vol. 47, no. 3, pp. 48–55].

    Google Scholar 

  8. Steijl, R., Dehaeze, F., Barakos, G.N., Garipova, L.I., Kusyumov, A.N., and Mikhailov, S.A., Simulation of Flow Around Oscillating Rotor Blade Section with Aeroelastic Flap, Izv. Vuz. Av. Tekhnika, 2015, vol. 58, no. 4, pp. 55–61 [Russian Aeronautics (Engl. Transl.), vol. 58, no. 4, pp. 419–425].

    Google Scholar 

  9. Girfanov, A.M. and Ledyankina, O.A., Methodology of Using Artificial Neural Networks for Imitating the Loading of a Single-Rotor Helicopter, Izv. Vuz. Av. Tekhnika, 2015, vol. 58, no. 4, pp. 26–30 [Russian Aeronautics (Engl. Transl.), vol. 58, no. 4, pp. 388–393].

    Google Scholar 

  10. Gorban’, A.N. and Rossiev, D.A., Neironnye seti na personal’nom komp’yutere (Neural Networks for a Personal Computer), Novosibirsk: Nauka, 1996.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Ledyankina.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2021, No. 2, pp. 164 - 168.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girfanov, A.M., Ledyankina, O.A. & Romanova, E.V. Investigation of Imitational Modeling Applicability for Aerodynamic Coefficients of Airfoils (Blades). Russ. Aeronaut. 64, 355–359 (2021). https://doi.org/10.3103/S1068799821020252

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799821020252

Keywords

Navigation