Skip to main content
Log in

Determination of the Optimal Aerodynamic Shape for a Propeller Blade Based on Parametric Optimization

  • FLIGHT VEHICLE DESIGN
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

The paper describes an up-to-date approach to searching for an optimal blade shape for the airplane propeller while considering geometric and technological restrictions. This approach uses the advanced parametric optimization methods. The paper shows an application of the approach developed to obtain an optimal aerodynamic blade shape for different engine operation modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Van Kuik, G.A.M., The Lanchester – Betz – Joukowsky Limit, Wind Energy, 2007, vol. 10, pp. 289–291.

    Article  Google Scholar 

  2. Goldstein, S., On the Vortex Theory of Screw Propellers, Proceeding of the Royal Society, 1929, series A, vol. 123, no. 792, pp. 440–465.

    MATH  Google Scholar 

  3. Theodorsen, T., Theory of Propellers, New York: McGraw–Hill, 1948.

    MATH  Google Scholar 

  4. Adkins, C.N. and Liebeck, R.H., Design of Optimal Propellers, Journal of Propulsion and Power, 1994, vol. 10, no. 5, pp. 676–682.

    Article  Google Scholar 

  5. Gainutdinov, V.G. and Levshonkov, N.V., Design of Highly Efficient Propeller Blades, Izv. Vuz. Av. Tekhnika, 2013, vol. 56, no 2, pp. 3–7 [Russian Aeronautics (Engl. Transl.), vol. 56, no. 2, pp. 111–116].

    Google Scholar 

  6. Gainutdinova, T.Yu. and Gainutdinova, A.V., Algorithm of Calculating the Light Airplane Flight Performance and Rational Design Airscrew Parameters at the Preliminary Design Stage, Izv. Vuz. Av. Tekhnika, 2016, vol. 59, no. 3, pp. 64–70 [Russian Aeronautics (Engl. Transl.), vol. 59, no.3, pp. 364–370].

    Google Scholar 

  7. Shaw, R.L., Computerized Aerodynamic Optimization of Aircraft Propellers, Master's Thesis, USA: Naval Postgraduate School, 1970, 206 p.

  8. Mendoza, J.P., Propeller Design by Numerical Optimization, Proc. of the SAE Business Aircraft Meeting, Society of Automotive Engineers, 1977, Wichita, USA, Technical Paper no.770451.

  9. Whitley, D., A Genetic Algorithm Tutorial, Statistics and Computing, 1994, vol. 4, no. 2, pp. 65–85.

    Article  Google Scholar 

  10. Lee Jongsoo and Prabhat Hajela, Parallel Genetic Algorithm Implementation in Multidisciplinary Rotor Blade Design, Journal of Aircraft, 1996, vol. 33, no. 5, pp. 962–970.

    Article  Google Scholar 

  11. Marinus, B.G., Multidisciplinary Optimization of Aircraft Propeller Blades, URL: https://acoustique.ec-lyon.fr/publi/marinius_thesis.pdf.

  12. Marinus, B.G., Roger, M., and Van Den Braembussche, R., Aeroacoustic and Aerodynamic Optimization of Aircraft Propeller Blades, Proc. of the 16th AIAA/CEAS Aeroacoustics Conference, 2010, Stockholm, AIAA Paper 2010-3850.

    Google Scholar 

  13. Voinov, I.B., Ibraev, D.F., Boldyrev, Yu.Ya., Aleshin, M.V., Davydov, I.S., and Kozhevnikov, V.A., Development of the Method for the Optimal Propeller Blade Shape Determination Based on up-to-Date Computational Approaches, Trudy mezhdunarodnoi konferentsii “Superkomp’yuternye dni v Rossii” (Proc. Int. Conf. “Russian Supercomputing Days 2019”), Moscow: MAKS Press, 2019, pp. 126–133.

    Google Scholar 

  14. Novokshenov, A., Nemov, A., Mamchits, D., and Zobacheva, A., Integrated System as a Tool for Implementation of Simulation and Optimization-Based Design Methodology, Materials Physics and Mechanics, 2017, vol. 34, no. 1, pp. 76–81.

    Google Scholar 

  15. Pierret, S.S. and Van den Braembussche, R.A., Turbomachinery Blade Design Using a Navier–Stokes Solver and Artificial Neural Network, Journal of Turbomachinery, 1999, vol. 121, no. 2, pp. 326–332.

    Article  Google Scholar 

  16. Boivin, S., Cayre, F., and Herard, J-M., A Finite Volume Method to Solve the Navier-Stokes Equations for Incompressible Flows on Unstructured Meshes, International Journal of Thermal Sciences, 2000, vol. 39, pp. 806–825.

    Article  Google Scholar 

  17. Menter, F.R., Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications, AIAA Journal, 1994, vol. 32, no. 8, pp. 1598–1605.

    Article  Google Scholar 

  18. Egorov, I.N., Kretinin, G.V., Leshchenko, I.A., and Kuptzov, S.V., IOSO Optimization Toolkit – Novel Software to Create Better Design, Proc. of the 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 2002, Atlanta, USA.

    Google Scholar 

  19. Ulpower, URL: https://ulpower.com/en/engines/ul520/ul520i.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Voinov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2021, No. 2, pp. 3 - 9.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borovkov, A.I., Voinov, I.B. & Ibraev, D.F. Determination of the Optimal Aerodynamic Shape for a Propeller Blade Based on Parametric Optimization. Russ. Aeronaut. 64, 173–180 (2021). https://doi.org/10.3103/S106879982102001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106879982102001X

Keywords

Navigation