Skip to main content
Log in

Effect of the Injection of Heat Shield Degradation Products on the Discharge Coefficient of the Submerged Nozzle

  • AIRCRAFT AND ROCKET ENGINE THEORY
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

Advanced methods of computational fluid dynamics are used for quasi steady estimation of the effect caused by injection of ablation products of a heat shield protecting a submerged contoured nozzle on discharge characteristics of the engine. Limits of discharge coefficient variation are determined depending on the injection intensity of degradation products and flow stagnation parameters that are involved in calculation of discharge coefficient. The influence of the temperature of combustion products on discharge coefficient is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Polezhaev, Yu.V. and Yurevich, F.B., Teplovaya zashchita (Thermal Protection), Moscow: Energiya, 1976.

    Google Scholar 

  2. Khalatov, A.A., Shevchuk, I.V., Avramenko, A.A., Kobzar, S.G., and Zheleznaya, T.A., Termogazodinamika slozhnykh potokov okolo krivolineynykh poverkhnostei (Thermo-Gas Dynamics of Flows near Curvilinear Surfaces), Kiev: Inst. Tekh. Teplofiziki NAN Ukrainy, 1999.

    Google Scholar 

  3. Gubertov, A.M., Mironov, V.V., Borisov, D.M., et al., Gazodinamicheskie i teplofizicheskie processy v raketnykh dvigatelyakh tverdogo topliva (Gas Dynamic and Thermophysical Processes in Solid Rocket Engines), Koroteev, A.S., Ed., Moscow: Mashinostroenie, 2004.

    Google Scholar 

  4. Cross, P.G. and Boyd, I.D., Conjugate Analyses of Ablation in Rocket Nozzles, J. of Spacecraft and Rockets, 2019, vol. 56, no. 5, pp. 1593–1610.

    Article  Google Scholar 

  5. Volchkov, E.P., Terekhov, V.I., and Terekhov, V.V., Flow Structure and Heat and Mass Transfer in Boundary Layers with Injection of Chemically Reacting Substances (Review), Fizika Goreniya i Vzryva, 2004, vol. 40, no. 1, pp. 3–20.

    Google Scholar 

  6. Sidorenko, V.V., Tulupov, Yu.I., and Kissin, B.V., Estimation of Losses in SRE Chamber Resulting from Incomplete Heat Release and Sublimation of Inhibitory Coating, Defense Technology, Oboronnaya Tekhnika, 1966, no. 5, pp. 11–15.

    Google Scholar 

  7. Glazunov, A.A., Zaulichnyi, E.G., Ivanov, V.Ya., and Rychkov, A.D., Interaction Between the Boundary Layer on a Burning Out Surface and Non-Equilibrium Two-Phase Flow in an Axisymmetric de Laval Nozzle, Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 1977, no. 3, pp. 53–62.

    Google Scholar 

  8. Sabirzyanov, A.N., Glazunov, A.I., Kirillova, A.N., and Titov, K.S., Simulation of a Rocket Engine Nozzle Discharge Coefficient, Izv. Vuz. Av. Tekhnika, 2018, vol. 61, no. 2, pp. 105–111 [Russian Aeronautics (Engl. Transl.), vol. 61, no. 2, pp. 257–264].

    Google Scholar 

  9. Sabirzyanov, A.N. and Kirillova, A.N., Multi-Factor Influence of Nozzle Submergence on Discharge Coefficient, Vestnik Kontserna VKO “Almaz–Antei”, 2018, no. 1 (24), pp. 43–50.

    Google Scholar 

  10. Sabirzyanov, A.N. and Kirillova, A.N., Effect of Mass Flux Ratio above the Submerged Part of a Nozzle with a Contoured Inlet on the Discharge Coefficient, Izv. Vuz. Av. Tekhnika, 2020, vol. 63, no. 2, pp. 125–131 [Russian Aeronautics (Engl. Transl.), vol. 63, no. 2, pp. 310–316].

    Google Scholar 

  11. Langtry, R.B. and Menter, F.R., Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes, AIAA Journal, 2009, vol. 47, no. 12, pp. 2894–2906.

    Article  Google Scholar 

  12. Shishkov, A.A., Panin, S.D., and Rumyantsev, B.V., Rabochie protsessy v raketnykh dvigatelyakh tverdogo topliva. Spravochnik (Working Processes in Solid Rocket Engines: Handbook), Moscow: Mashinostroenie, 1989.

    Google Scholar 

  13. Bondarenko, A.A., Kovrizhnykh, E.N., and Koval’nogov, N.N., Laminarization of a Boundary Layer on the Perforated Surface with Blind Damping Cavities in an Accelerating Flow, Izv. Vuz. Av. Tekhnika, 2011, vol. 54, no. 1, pp. 41–44 [Russian Aeronautics (Engl. Transl.), vol. 54, no. 1, pp. 56–61].

    Google Scholar 

  14. Pankratov, B.M., Polezhaev, Yu.V., and Rud’ko, A.K., Vzaimodeystvie materialov s gazovymi potokami (Interaction of Materials with Gas Flows), Moscow: Mashinostroenie, 1975.

    Google Scholar 

  15. Leont’ev, A.I., Lushchik, V.G., and Yakubenko, A.E., Injection/Suction Effect on Energy Separation of Compressible Flows, Izv. RAN. Mekhanika Zhidkosti i Gaza, 2011, no. 6, pp. 110–117 [Fluid Dynamics (Engl. Transl.), 2011, vol. 46, no. 6, pp. 935–941].

    MathSciNet  MATH  Google Scholar 

  16. Irov, Yu.D., Keil’, E.V., Maslov, B.N., et al., Gazodinamicheskie funktsii (Gasodynamic Functions), Moscow: Mashinostroenie, 1965.

    Google Scholar 

Download references

ACKNOWLEDGEMENTS

The study was financially supported by the Russian Foundation for Basic Research (project no. 19-38-90277).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Sabirzyanov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2021, No. 2, pp. 129 - 135.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirillova, A.N., Sabirzyanov, A.N. Effect of the Injection of Heat Shield Degradation Products on the Discharge Coefficient of the Submerged Nozzle. Russ. Aeronaut. 64, 314–321 (2021). https://doi.org/10.3103/S1068799821020203

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799821020203

Keywords

Navigation