Skip to main content
Log in

Magnetic Absorption and Photoluminescence in a Cylindrical Quantum Dot with a Modified Peschl–Teller Potential

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

The electron-hole states in a cylindrical quantum dot with a limiting parabolic potential, as well as a modified Pöschl-Teller potential in the regime of strong dimensional quantization, are investigated. Expressions are found for both the energy and the wave functions of particles in the radial and axial directions. Expressions for the radial energy are obtained for various modes of magnetic quantization. Optical interband absorption spectra and photoluminescence spectra are considered as functions of the incident light energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Michler, P., Single Quantum Dots: Fundamentals, Applications and New Concepts, 1-st ed., NY: Springer, 2003.

    Google Scholar 

  2. Wang, Z.M., Self-Assembled Quantum Dots, 1-st ed., NY: Springer, 2008.

    Book  Google Scholar 

  3. Mizel, A. and Lidar, D.A., Physical Review B, 2004, vol. 70, p. 11.

    Article  Google Scholar 

  4. Hayrapetyan, D.B., Ohanyan, G.L., Baghdasaryan, D.A., Sarkisyan, H.A., Baskoutas, S., and Kazaryan, E.M., Physica E: Low-dimensional Systems and Nanostructures, 2018, vol. 95, p. 27.

    Article  ADS  Google Scholar 

  5. Fonoberov, V.A. and Balandin, A.A., Journal of Physics: Condensed Matter, 2005, vol. 17, p. 7.

    Google Scholar 

  6. Yamaguchi, K., Yujobo, K., and Kaizu, T., Japanese journal of applied physics, 2000, vol. 39, p. L1245.

    Article  ADS  Google Scholar 

  7. Gambaryan, K.M., Nanoscale research letters, 2010, vol. 5, Art. num. 587.

    Article  ADS  Google Scholar 

  8. Gambaryan, K.M., Aroutiounian, V.M., and Harutyunyan, V.G., Applied Physics Letters, 2012, vol. 101, p. 093103.

    Article  ADS  Google Scholar 

  9. Bimberg, D. and Ledentsov, N., Journal of Physics: Condensed Matter, 2003, vol. 15, no. 24, p. R1063.

    ADS  Google Scholar 

  10. Coe-Sullivan, S., Liu, W., Allen, P., and Steckel, J.S., ECS Journal of Solid State Science and Technology, 2012, vol. 2, p. R3026.

    Article  Google Scholar 

  11. Hayrapetyan, D.B., Kazaryan, E.M., and Sarkisyan, H.A., Optics Communications, 2016, vol. 371, p. 138.

    Article  ADS  Google Scholar 

  12. Kim, H., Han, J.Y., Kang, D.S., Kim, S.W., Jang, D.S., Suh, M., Kirakosyan, A., and Jeon, D.Y., Journal of crystal growth, 2011, vol. 326, p. 90.

    Article  ADS  Google Scholar 

  13. Mukai, K., Journal of nanoscience and nanotechnology, 2014, vol. 14, no. 3, p. 2148.

    Article  Google Scholar 

  14. Lifshitz, E., Bashouti, M., Kloper, V., Kigel, A., Eisen, M.S., and Berger, S., Nano Letters, 2003, vol. 3, p. 6.

    Article  Google Scholar 

  15. Watt, A.A.R., Meredith, P., Riches, J.D., Atkinson, S., and Rubinsztein-Dunlop, H., Current Applied Physics, 2004, vol. 4, no. 2-4, p. 320.

    Article  ADS  Google Scholar 

  16. Fomin, V.M., Gladilin, V.N., Devreese, J.T., Pokatilov, E.P., Balaban, S.N., and Klimin, S.N., Physical Review B, 1998, vol. 57, no. 4, p. 2415.

    Article  ADS  Google Scholar 

  17. Baghdasaryan, D.A., Hayrapetyan, D.B., and Kazaryan, E.M., Journal of Nanophotonics, 2016, vol. 10, no. 3, p. 033508.

    Article  ADS  Google Scholar 

  18. Wang, C. and Xiong, G., Microelectronics journal, 2006, vol. 37, p. 847.

    Article  Google Scholar 

  19. Baghdasaryan, D.A., Hayrapetyan, D.B., Kazaryan, E.M., and Sarkisyan, H.A., Physica E: Low-dimensional Systems and Nanostructures, 2018, vol. 101 p. 1.

    Article  ADS  Google Scholar 

  20. Hayrapetyan, D.B., Chalyan, A.V., Kazaryan, E.M., and Sarkisyan, H.A., Journal of Nanomaterials, 2015, vol. 2015, id 915742.

  21. Bester, G. and Zunger, A., Physical Review B, 2005, vol. 71, p. 045318.

    Article  ADS  Google Scholar 

  22. Hayrapetyan, D.B., Kazaryan, E.M., and Sarkisyan, H.A., Physica E: Low-dimensional Systems and Nanostructures, 2016, vol. 75, p. 353.

    Article  ADS  Google Scholar 

  23. Hayrapetyan, D.B., Kazaryan, E.M., and Sarkisyan. H.A., J. Contemp. Phys., 2013, vol. 48, p. 32.

    Article  Google Scholar 

  24. Hayrapetyan, D.B., Kazaryan, E.M., and Tevosyan, H.K., J. Contemp. Phys., 2014, vol. 49, p. 119.

    Article  Google Scholar 

  25. Sargsian, T.A., Mkrtchyan, M.A., Sarkisyan, H.A., and Hayrapetyan, D.B., Physica E: Low-dimensional Systems and Nanostructures, 2021, vol. 126, p. 114440.

    Article  Google Scholar 

  26. Zeng, Z., Garoufalis, C.S., Baskoutas, S., and Terzis, A.F., Journal of Applied Physics, 2012, vol. 112, p. 064326.

    Article  ADS  Google Scholar 

  27. Zeng, Z., Garoufalis, C.S., and Baskoutas, S., Journal of Physics D: Applied Physics, 2012, vol. 45, p. 235102.

    Article  ADS  Google Scholar 

  28. Baskoutas, S. and Terzis, A.F., Journal of Computational and Theoretical Nanoscience, 2008, vol. 5, p. 88.

    Google Scholar 

  29. Zhang, X., Hou, S., Mao, H., Wang, J., and Zhu, Z., Applied surface science, 2010, vol. 256, p. 3862.

    Article  ADS  Google Scholar 

  30. Efros, Al.L. and Efros, A.L., Sov. Phys. Semicond, 1982, vol. 16, p. 772.

    MathSciNet  Google Scholar 

  31. Brunner, K., Bockelmann, U., Abstreiter, G., Walther, M., Böhm, G., Tränkle, G., and Weimann, G., Physical review letters, 1992, vol. 69, no. 22, p. 3216.

    Article  ADS  Google Scholar 

  32. Van Roosbroeck, W. and Shockley, W., Physical Review, 1954, vol. 94, no. 6, p. 1558.

    Article  ADS  Google Scholar 

  33. Bhattacharya, R., Pal, B., and Bansal, B., Applied Physics Letters, 2012, vol. 100, p. 222103.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Gevorkyan.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by V.M. Aroutiounian

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gevorkyan, G.S., Kharatyan, G.T. & Tevosyan, O.K. Magnetic Absorption and Photoluminescence in a Cylindrical Quantum Dot with a Modified Peschl–Teller Potential. J. Contemp. Phys. 56, 221–227 (2021). https://doi.org/10.3103/S1068337221030105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337221030105

Keywords:

Navigation