Skip to main content
Log in

Adsorption of 177Lu from Water by Using Synthetic Hydroxyapatite

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Adsorption behavior of lutetium by hydroxyapatite (HAP) was investigated by considering pH, adsorbent dose, contact time, initial concentration of lutetium, and temperature. The adsorbent was synthesized and characterized by X-ray diffraction (XRD; JCPDS file 01–04-3708), and the point of zero charge was 7.22. When the initial pH (pHi) was 3, the final pH (pHf) of the system was approximately 6, and in these conditions, approximately 98% of lutetium is present as Lu3+. The equilibrium of the adsorption system was reached in 5 min, and the HAP retained 99.2 ± 0.3% of lutetium. The experimental kinetic and isotherm data were adjusted to the pseudo-second-order and Freundlich models, respectively, indicating a chemisorption mechanism on a heterogeneous surface. Experimental and literature data revealed that Freundlich parameters depend on the cation size of the lanthanide elements; Kf (Freundlich constant) values linearly decrease with the ionic radii of the elements. The adsorption process was exothermic and spontaneous, as indicated by the negative values of enthalpy and Gibbs free energy values. The entropy value is small and negative, which may indicate that the affinity between Lu3+ and HPA is not strong.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

taken from Granados-Correa et al. (2013) and the present work. The equations of the lines are Kf = 5.94 ionic radii (Å) + 8.03 (R2 = 0.999) and 1/n = 3.95 ionic radii (Å) -2.34

Fig. 7
Fig. 8.

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  • Audi, G., Kondev, F. G., Wang, M., Huang, W. J., & Naimi, S. (2017). The NUBASE 2016 evaluation of nuclear properties. Chinese Physics C, 41(3), 030001.

    Article  Google Scholar 

  • Awual, M. R., Alharthi, N. H., Okamoto, Y., Karim, M. R., Halim, M. E., Hasan, M. M., Rahman, M. M., Islam, M. M., Khaleque, M. A., & Sheikh, M. C. (2017). Ligand field effect for dysprosium(III) and lutetium(III) adsorption and EXAFS coordination with novel composite nanomaterials. Chemical Engineering Journal, 320, 427–435.

    Article  CAS  Google Scholar 

  • Banerjee, S., Pillai, M. R. A., & Knapp, F. F. (2015). Lutetium-177 therapeutic radiopharmaceuticals: Linking chemistry, radiochemistry, and practical applications. Chemical Reviews, 115(8), 2934–2974.

    Article  CAS  Google Scholar 

  • Castor, S. B. & Hedrick, J. B. (2006). Rare Earth Elements. In: J. Elzea Kogel, N. C. Trivedi, and J. M. Barker (Ed.). Industrial minerals and rocks. Society for Mining, Metallurgy and Exploration, 769–792.

  • Cawthray, J. F., Creagh, A. L., Haynes, C. A., & Orvig, C. (2015). Ion exchange in hydroxyapatite with lanthanides. Inorganic Chemistry, 54(4), 1440–1445.

    Article  CAS  Google Scholar 

  • Chakraborty, S., Das, T., Sarma, H. D., Venkatesh, M., & Banerjee, S. (2008). Preparation and preliminary studies on 177Lu-labeled hydroxyapatite particles for possible use in the therapy of liver cancer. Nuclear Medicine and Biology, 35(5), 589–597.

    Article  CAS  Google Scholar 

  • Chakraborty, S., Vimalnath, K. V., Rajeswari, A., Shinto, A., Sarma, H. D., Kamaleshwaran, K., & Dash, A. (2014). Preparation, evaluation, and first clinical use of 177Lu-labeled hydroxyapatite (HA) particles in the treatment of rheumatoid arthritis: Utility of cold kits for convenient dose formulation at hospital radiopharmacy. Journal of Labelled Compounds Radiopharmaceuticals, 57(7), 453–462.

    Article  CAS  Google Scholar 

  • Dada, A. O., Olalekan, A. P., Olatunya, A. M., & Dada, O. J. I. J. C. (2012). Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR Journal of Applied Chemistry, 3(1), 38–45.

    Article  Google Scholar 

  • Granados-Correa, F., Vilchis-Granados, J., Jiménez-Reyes, M. & Quiroz-Granados, L. A. (2013). Adsorption behaviour of La (III) and Eu (III) ions from aqueous solutions by hydroxyapatite: Kinetic, isotherm, and thermodynamic studies. Journal of Chemistry, ID 751696, pp 1-9.

  • Haley, T. J. (1979). Toxicity. In: Gschneidner K. A. Jr. and Eyring L. R. (Eds.) Handbook on the physics and chemistry of the rare earths, Elsevier. Volume 4, Chapter 40, pp 553–585.

  • Ho, Y. S. (2006). Second-order kinetic model for the sorption of cadmium onto tree fern: A comparison of linear and non-linear methods. Water Research, 40(1), 119–125.

    Article  CAS  Google Scholar 

  • Jiménez-Reyes, M., & Solache-Ríos, M. (2010). Sorption behavior of fluoride ions from aqueous solutions by hydroxyapatite. Journal of Hazardous Materials, 180(1–3), 297–302.

    Article  Google Scholar 

  • Jiménez-Reyes, M., Almazán-Sánchez, P. T., & Solache-Ríos, M. (2020). Behaviour of cerium(III) in the presence of components of soils and its humate complex. Environmental Technology. https://doi.org/10.1080/09593330.2020.1758219

    Article  Google Scholar 

  • Kay, M. I., Young, R. A., & Posner, A. S. (1964). Crystal structure of hydroxyapatite. Nature, 204(4963), 1050–1052.

    Article  CAS  Google Scholar 

  • Keeling, A. A., & Vaughan, A. T. (1988). Factors influencing the adsorption of Lutetium-177 on hydroxyapatite. International Journal of Radiation Applications and Instrumentation. Part B. Nuclear Medicine and Biology, 15(5), 489–492.

    Article  CAS  Google Scholar 

  • Krestou, A., Xenidis, A., & Panias, D. (2004). Mechanism of aqueous uranium (VI) uptake by hydroxyapatite. Minerals Engineering, 17(3), 373–381.

    Article  CAS  Google Scholar 

  • Kegl, T., Košak, A., Lobnik, A., Novak, Z., Kralj, A. K., & Ban, I. (2020). Adsorption of rare earth metals from wastewater by nanomaterials: a review. Journal of Hazardous Materials, 386, 121632.

    Article  CAS  Google Scholar 

  • Li, J., Gong, A., Li, F., Qiu, L., Zhang, W., Gao, G., Liu, Y., & Li, J. (2018). Synthesis and characterization of magnetic mesoporous Fe3O4@mSiO2–DODGA nanoparticles for adsorption of 16 rare earth elements. RSC Advances, 8(68), 39149–39161.

    Article  CAS  Google Scholar 

  • Mobasherpour, I., Salahi, E., & Pazouki, M. (2012). Comparative of the removal of Pb2+, Cd2+ and Ni2+ by nano crystallite hydroxyapatite from aqueous solutions: Adsorption isotherm study. Arabian Journal of Chemistry, 5(4), 439–446.

    Article  CAS  Google Scholar 

  • Nayak, A. K. (2010). Hydroxyapatite synthesis methodologies: An overview. International Journal of ChemTech Research, 2(2), 903–907.

    Google Scholar 

  • Pillai, M. R. A., & Knapp, F. F. (2015). Evolving important role of lutetium-177 for therapeutic nuclear medicine. Current Radiopharmaceuticals, 8(2), 78–85.

    Article  CAS  Google Scholar 

  • Puigdomenech, I. (2015). SPANA program. www.kth.se/che/medusasites/google.com/site/chemdiagr/

  • Roveri, N., & Palazzo, B. (2007). Hydroxyapatite nanocrystals as bone tissue substitute. Nanotechnologies for the Life Sciences, 9(Chapter 7), 283–307.

    Google Scholar 

  • Saha, P. & Chowdhury, S. (2011). Insight into adsorption thermodynamics. Thermodynamics. https://www.semanticscholar.org/paper/Insight-Into-Adsorption-Thermodynamics-Saha-Chowdhury/b34f4bfea6e82a29c4d3530428635f0c5f6b37d9. Accessed July 2021.

  • Sebei, H., Pham Minh, D., Lyczko, N., Sharrock, P., & Nzihou, A. (2017). Hydroxyapatite-based sorbents: Elaboration, characterization, and application for the removal of catechol from the aqueous phase. Environmental Technology, 38(20), 2611–2620.

    Article  CAS  Google Scholar 

  • Skwarek, E., Gładysz-Płaska, A., & Bolbukh, Y. (2017). Adsorption of uranyl ions at the nano-hydroxyapatite and its modification. Nanoscale Research Letters, 12(1), 278.

  • Stechynska, E., Vasylechko, V., Gryshchouk, G., & Patsay, I. (2020). Preconcentration of lutetium from aqueous solution by Transcarpathian clinoptilolite. Acta Chimica Slovenica, 67(1), 105–112.

    Article  CAS  Google Scholar 

  • Trujillo-Nolasco, R. M., Morales-Avila, E., Ocampo-García, B. E., Ferro-Flores, G., Gibbens-Bandala, B. V., Escudero-Castellanos, A., & Isaac-Olive, K. (2019). Preparation and in vitro evaluation of radiolabeled HA-PLGA nanoparticles as novel MTX delivery system for local treatment of rheumatoid arthritis. Materials Science and Engineering: C, 103, 109766.

    Article  CAS  Google Scholar 

Download references

Funding

Dr. Almazán-Sánchez is supported by Catedras-CONACYT Fellowship – 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Solache-Ríos.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez-Reyes, M., Almazán-Sánchez, P.T., Jiménez-Becerril, J. et al. Adsorption of 177Lu from Water by Using Synthetic Hydroxyapatite. Water Air Soil Pollut 232, 394 (2021). https://doi.org/10.1007/s11270-021-05339-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05339-1

Keywords

Navigation