Skip to main content
Log in

Kinetic modeling and dynamic optimization of a commercial dichloroethane thermal cracker

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In the current research, a mathematical model is developed to simulate a commercial ethylene dichloride thermal cracker assuming pseudo-steady state condition. The considered reaction network includes 19 elementary and reversible reactions, 14 molecules, and 6 radical species. To prove the validity of the proposed model, the simulation results are compared with the available plant data. The results show that the coke build-up and deposition on the inner surface of the coil tube increases the heat transfer resistance during the process run time and has a negative effect on the production rate and pressure drop. Afterward, a sensitivity analysis is performed to investigate the effects of the feed and firebox temperatures on the ethylene dichloride cracking severity and selectivity. The results show that increasing the firebox and feed temperatures enhance the vinyl chloride monomer production rate. In the next step, a dynamic optimization problem is formulated and considered to calculate the optimal dynamic trajectory of the feed and furnace temperatures to achieve the maximum vinyl chloride monomer production rate. The programmed optimization problem is solved by the genetic algorithm method. The results show that applying the optimal trajectory of the decision variables can enhance the VCM production rate by 2.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Ac :

Surface area (m2)

CP :

Specific heat capacity (J mol1 K1)

Dt :

Coil diameter (m)

Ft :

Total flow rate (mol s1)

Fr:

Friction factor

ff,w :

Shape coefficient between tube and radiation chamber

G:

Mass flux (kg m2 s1)

g :

Acceleration of gravity (m s2)

h:

Heat transfer coefficient (W m2 K1)

J:

Objective function

∆Hj :

Heat of reaction j (J mol1)

k:

Thermal conductivity coefficient (W m1 K1)

Mc :

Coke molecular weight (g mol1)

Mwi :

Molecular weight of component i (g mol1)

P:

Total pressure (bar)

Q(z):

Heat transfer rate (J)

ri :

Rate of reaction (mol m3 h1)

\({\mathrm{r}}_{c}\) :

Rate of coke formation reaction (mol m3 s1)

R:

Universal gas constant (m3 Pa K1 mol1)

Rb :

Tube curvature radius

Ri :

Heat transfer resistance

Re:

Reynolds number

T:

Temperature (K)

U:

Overall heat transfer coefficient (W m2 K1)

ug :

Gas velocity (m s1)

yi :

Mole fraction of component i in gas phase

z:

Axial reactor coordinate (m)

Z:

Compressibility factor, dimensionless

ρg :

Density of gas phase (kg m3)

\({\uprho }_{c}\) :

Coke density (kg m3)

\(\upxi\) :

Tube curvature parameter

\(\varepsilon\) :

Emissivity factor

\(\omega\) :

Weight of objectives

\(\Lambda\) :

Tube curvature angle

\(\upsilon _{{\text{i}}}\) :

Stoichiometric coefficient of component i

References

  1. Nyeng I (2008) Modeling of a 1, 2-dichloroethane cracker. Master Tgesis in NTNU, Trondheim

    Google Scholar 

  2. Zhang Y, Hu G, Du W, Qian F (2016) Steam cracking and EDC furnace simulation. Adv Chem Eng 49:199–272

    Article  CAS  Google Scholar 

  3. Mark HF, Kroschwitz JI (1985) Encyclopedia of polymer science and engineering. Pergamon Press, New York

    Google Scholar 

  4. Schirmeister R, Kahsnitz J, Träger M (2009) Influence of EDC cracking severity on the marginal costs of vinyl chloride production. Ind Eng Chem Res 48(6):2801–2809

    Article  CAS  Google Scholar 

  5. Moradi Z, Farsi M (2020) Simulation of direct chlorination of ethylene in a two-phase reactor by coupling equilibrium, kinetic and population balance models. Chem Prod Process Model. https://doi.org/10.1515/cppm-2020-0061

    Article  Google Scholar 

  6. Borsa AG, Herring AM, McKinnon JT, McCormick RL, Ko GH (2001) Coke and byproduct formation during 1,2-dichloroethane pyrolysis in a laboratory tubular reactor. Ind Eng Chem Res 40(11):2428–2436

    Article  CAS  Google Scholar 

  7. Flid M, Trushechkina M, Treger Y (2017) Theoretical and applied aspects of 1,2-dichloroethane pyrolysis. J Thermodyn Catal 8(189):2–18

    Google Scholar 

  8. Borsa AG (1999) Industrial plant/laboratory investigation and computer modeling of 1,2-dichloroethane pyrolysis. Doctoral dissertations, Colorado

  9. Mochida I, Tsunawaki T, Sotowa C, Korai Y, Higuchi K (1996) Coke produced in the commercial pyrolysis of ethylene dichloride into vinyl chloride. Ind Eng Chem Res 35(10):3803–3807

    Article  CAS  Google Scholar 

  10. Choi B-S, Oh JS, Lee S-W, Kim H, Yi J (2001) Simulation of the effects of CCl4 on the ethylene dichloride pyrolysis process. Ind Eng Chem Res 40(19):4040–4049

    Article  CAS  Google Scholar 

  11. Oliveira TCLd, Pereira Neto AT, Alves JJN, Morais Júnior AA (2017) CFD simulation of an industrial reactor for thermal cracking of 1, 2-dichloroethane. Braz J Chem Eng 34(2):541–555

    Article  Google Scholar 

  12. Lee KY (2002) Numerical simulations of the pyrolysis of 1, 2 dichloroethane. KSME Int J 16(1):102–108

    Article  Google Scholar 

  13. Fahiminezhad A, Peyghambarzadeh SM, Rezaeimanesh M (2020) Numerical modelling and industrial verification of ethylene dichloride cracking furnace. J Chem Pet Eng 54(2):165–185

    CAS  Google Scholar 

  14. Li C, Hu G, Zhong W, He W, Du W, Qian F (2013) Coke deposition influence based on a run length simulation of a 1, 2-dichloroethane cracker. Ind Eng Chem Res 52(49):17501–17516

    Article  CAS  Google Scholar 

  15. Czechorski TJ (2019) A kinetic and thermodynamic model of ethylene dichloride pyrolysis. Master's Thesis in University of Louisville, Kentucky

  16. Mousavipour S, Saheb V, Pirhadi F, Dehbozorgi M (2007) Experimental and theoretical study on the kinetics and mechanism of thermal decomposition of 1, 2-dichloroethane. J Iran Chem Soc 4(3):279–298

    Article  CAS  Google Scholar 

  17. Lakshmanan A, Rooney WC, Biegler LT (1999) A case study for reactor network synthesis: the vinyl chloride process. Comput Chem Eng 23:479–495

    Article  CAS  Google Scholar 

  18. Alam I, West DH, Balakotaiah V (2016) Transport effects on pattern formation and maximum temperature in homogeneous–heterogeneous combustion. Chem Eng J 288:99–115

    Article  CAS  Google Scholar 

  19. Abbasali SZ, Farsi M, Rahimpour M (2017) Simulation and dynamic optimization of an industrial naphtha thermal cracking furnace based on time variant feeding policy. Chem Prod Process Model. https://doi.org/10.1515/cppm-2017-0032

    Article  Google Scholar 

  20. Rice RG, Do DD (2012) Applied mathematics and modeling for chemical engineers. Wiley, New York

    Google Scholar 

  21. Rao SS (2019) Engineering optimization: theory and practice. Wiley3, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Farsi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raoof, M., Farsi, M. & Setoodeh, P. Kinetic modeling and dynamic optimization of a commercial dichloroethane thermal cracker. Reac Kinet Mech Cat 134, 331–346 (2021). https://doi.org/10.1007/s11144-021-02069-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02069-7

Keywords

Navigation