1932

Abstract

Our sense of sight relies on photoreceptors, which transduce photons into the nervous system's electrochemical interpretation of the visual world. These precious photoreceptors can be disrupted by disease, injury, and aging. Once photoreceptors start to die, but before blindness occurs, the remaining retinal circuitry can withstand, mask, or exacerbate the photoreceptor deficit and potentially be receptive to newfound therapies for vision restoration. To maximize the retina's receptivity to therapy, one must understand the conditions that influence the state of the remaining retina. In this review, we provide an overview of the retina's structure and function in health and disease. We analyze a collection of observations on photoreceptor disruption and generate a predictive model to identify parameters that influence the retina's response. Finally, we speculate on whether the retina, with its remarkable capacity to function over light levels spanning nine orders of magnitude, uses these same adaptational mechanisms to withstand and perhaps mask photoreceptor loss.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-100119-124713
2021-09-15
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/vision/7/1/annurev-vision-100119-124713.html?itemId=/content/journals/10.1146/annurev-vision-100119-124713&mimeType=html&fmt=ahah

Literature Cited

  1. Angueyra JM, Kindt KS. 2018. Leveraging zebrafish to study retinal degenerations. Front. Cell Dev. Biol. 6:110
    [Google Scholar]
  2. Applebury ML, Antoch MP, Baxter LC, Chun LL, Falk JD et al. 2000. The murine cone photoreceptor: A single cone type expresses both S and M opsins with retinal spatial patterning. Neuron 27:3513–23
    [Google Scholar]
  3. Atick JJ, Redlich AN. 1990. Towards a theory of early visual processing. Neural Comput 2:3308–20
    [Google Scholar]
  4. Baden T, Berens P, Franke K, Román Rosón M, Bethge M, Euler T 2016. The functional diversity of retinal ganglion cells in the mouse. Nature 529:7586345–50
    [Google Scholar]
  5. Beier C, Hovhannisyan A, Weiser S, Kung J, Lee S et al. 2017. Deafferented adult rod bipolar cells create new synapses with photoreceptors to restore vision. J. Neurosci. 37:174635–44
    [Google Scholar]
  6. Beier C, Palanker D, Sher A 2018. Stereotyped synaptic connectivity is restored during circuit repair in the adult mammalian retina. Curr. Biol. 28:111818–24.e2
    [Google Scholar]
  7. Bensinger E, Rinella N, Saud A, Loumou P, Ratnam K et al. 2019. Loss of foveal cone structure precedes loss of visual acuity in patients with rod-cone degeneration. Investig. Ophthalmol. Vis. Sci. 60:83187–96
    [Google Scholar]
  8. Bleckert A, Schwartz GW, Turner MH, Rieke F, Wong ROL. 2014. Visual space is represented by non-matching topographies of distinct mouse retinal ganglion cell types. Curr. Biol. 24:3310–15
    [Google Scholar]
  9. Borghuis BG, Looger LL, Tomita S, Demb JB. 2014. Kainate receptors mediate signaling in both transient and sustained OFF bipolar cell pathways in mouse retina. J. Neurosci. 34:186128–39
    [Google Scholar]
  10. Boycott BB, Dowling JE. 1969. Organization of the primate retina: light microscopy, with an appendix: a second type of midget bipolar cell in the primate retina. Philos. Trans. R. Soc. Lond. B. 255:799109–84
    [Google Scholar]
  11. Bringmann A, Syrbe S, Görner K, Kacza J, Francke M et al. 2018. The primate fovea: structure, function and development. Prog. Retin. Eye Res. 66:49–84
    [Google Scholar]
  12. Care RA, Anastassov IA, Kastner DB, Kuo Y-M, Della Santina L, Dunn FA 2020. Mature retina compensates functionally for partial loss of rod photoreceptors. Cell Rep 31:10107730
    [Google Scholar]
  13. Care RA, Kastner DB, De la Huerta I, Pan S, Khoche A et al. 2019. Partial cone loss triggers synapse-specific remodeling and spatial receptive field rearrangements in a mature retinal circuit. Cell Rep 27:72171–83.e5
    [Google Scholar]
  14. Chang L, Breuninger T, Euler T. 2013. Chromatic coding from cone-type unselective circuits in the mouse retina. Neuron 77:3559–71
    [Google Scholar]
  15. Chen J, Nathans J. 2007. Genetic ablation of cone photoreceptors eliminates retinal folds in the retinal degeneration 7 (rd7) mouse. Investig. Ophthalmol. Vis. Sci. 48:62799–805
    [Google Scholar]
  16. Chichilnisky EJ, Kalmar RS. 2002. Functional asymmetries in ON and OFF ganglion cells of primate retina. J. Neurosci. 22:72737–47
    [Google Scholar]
  17. Collin GB, Gogna N, Chang B, Damkham N, Pinkney J et al. 2020. Mouse models of inherited retinal degeneration with photoreceptor cell loss. Cells 9:4931
    [Google Scholar]
  18. Cuenca N, Pinilla I, Sauvé Y, Lund R. 2005. Early changes in synaptic connectivity following progressive photoreceptor degeneration in RCS rats. Eur. J. Neurosci. 22:51057–72
    [Google Scholar]
  19. Daw NW, Brunken WJ, Parkinson D. 1989. The function of synaptic transmitters in the retina. Annu. Rev. Neurosci. 12:205–25
    [Google Scholar]
  20. De Valois RL. 1965. Analysis and coding of color vision in the primate visual system. Cold Spring Harb. Symp. Quant. Biol. 30:567–79
    [Google Scholar]
  21. De Vera Mudry MC, Kronenberg S, Komatsu S, Aguirre GD. 2013. Blinded by the light: retinal phototoxicity in the context of safety studies. Toxicol. Pathol. 41:6813–25
    [Google Scholar]
  22. Demb JB. 2008. Functional circuitry of visual adaptation in the retina: retinal mechanisms for visual adaptation. J. Physiol. 586:184377–84
    [Google Scholar]
  23. Demb JB, Haarsma L, Freed MA, Sterling P. 1999. Functional circuitry of the retinal ganglion cell's nonlinear receptive field. J. Neurosci. 19:229756–67
    [Google Scholar]
  24. Demb JB, Singer JH. 2015. Functional circuitry of the retina. Annu. Rev. Vis. Sci. 1:263–89
    [Google Scholar]
  25. Demb JB, Zaghloul K, Haarsma L, Sterling P. 2001. Bipolar cells contribute to nonlinear spatial summation in the brisk-transient (Y) ganglion cell in mammalian retina. J. Neurosci. 21:197447–54
    [Google Scholar]
  26. DeVries SH. 2000. Bipolar cells use kainate and AMPA receptors to filter visual information into separate channels. Neuron 28:3847–56
    [Google Scholar]
  27. DeVries SH, Baylor DA. 1997. Mosaic arrangement of ganglion cell receptive fields in rabbit retina. J. Neurophysiol. 78:42048–60
    [Google Scholar]
  28. Diamond JS. 2017. Inhibitory interneurons in the retina: types, circuitry, and function. Annu. Rev. Vis. Sci. 3:1–24
    [Google Scholar]
  29. Dowling JE. 1991. Retinal neuromodulation: the role of dopamine. Vis. Neurosci. 7:1–287–97
    [Google Scholar]
  30. Duncan JL, Pierce EA, Laster AM, Daiger SP, Birch DG et al. 2018. Inherited retinal degenerations: current landscape and knowledge gaps. Transl. Vis. Sci. Technol. 7:46
    [Google Scholar]
  31. El-Danaf RN, Huberman AD 2019. Sub-topographic maps for regionally enhanced analysis of visual space in the mouse retina. J. Comp. Neurol. 527:1259–69
    [Google Scholar]
  32. Enroth-Cugell C, Freeman AW. 1987. The receptive-field spatial structure of cat retinal Y cells. J. Physiol. 384:49–79
    [Google Scholar]
  33. Enroth-Cugell C, Robson JG. 1966. The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. 187:3517–52
    [Google Scholar]
  34. Field GD, Chichilnisky EJ. 2007. Information processing in the primate retina: circuitry and coding. Annu. Rev. Neurosci. 30:1–30
    [Google Scholar]
  35. Foote KG, Loumou P, Griffin S, Qin J, Ratnam K et al. 2018. Relationship between foveal cone structure and visual acuity measured with adaptive optics scanning laser ophthalmoscopy in retinal degeneration. Investig. Ophthalmol. Vis. Sci. 59:83385–93
    [Google Scholar]
  36. Frazor RA, Geisler WS. 2006. Local luminance and contrast in natural images. Vis. Res. 46:101585–98
    [Google Scholar]
  37. Freeman J, Field GD, Li PH, Greschner M, Gunning DE et al. 2015. Mapping nonlinear receptive field structure in primate retina at single cone resolution. eLife 4:e05241
    [Google Scholar]
  38. Gauthier JL, Field GD, Sher A, Greschner M, Shlens J et al. 2009. Receptive fields in primate retina are coordinated to sample visual space more uniformly. PLOS Biol 7:4e1000063
    [Google Scholar]
  39. Geller AM, Sieving PA, Green DG. 1992. Effect on grating identification of sampling with degenerate arrays. J. Opt. Soc. Am. A 9:3472–77
    [Google Scholar]
  40. Gjorgjieva J, Sompolinsky H, Meister M. 2014. Benefits of pathway splitting in sensory coding. J. Neurosci. 34:3612127–44
    [Google Scholar]
  41. Gollisch T, Meister M. 2008. Rapid neural coding in the retina with relative spike latencies. Science 319:58661108–11
    [Google Scholar]
  42. Gorfinkel J, Lachapelle P, Molotchnikoff S. 1988. Maturation of the electroretinogram of the neonatal rabbit. Doc. Ophthalmol. 69:237–45
    [Google Scholar]
  43. Grünert U, Martin PR. 2021. Cell types and cell circuits in human and non-human primate retina. Prog. Retin. Eye Res. 78:100844
    [Google Scholar]
  44. Hardcastle AJ, Sieving PA, Sahel J-A, Jacobson SG, Cideciyan AV et al. 2018. Translational retinal research and therapies. Transl. Vis. Sci. Technol. 7:58
    [Google Scholar]
  45. Haverkamp S. 2006. Synaptic plasticity in CNGA3˗/˗ mice: Cone bipolar cells react on the missing cone input and form ectopic synapses with rods. J. Neurosci. 26:195248–55
    [Google Scholar]
  46. Hellmer CB, Ichinose T. 2018. Functional and morphological analysis of OFF bipolar cells. Methods Mol. Biol. 1753:217–33
    [Google Scholar]
  47. Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W. 2013. Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500:7461168–74
    [Google Scholar]
  48. Horwitz GD. 2020. Signals related to color in the early visual cortex. Annu. Rev. Vis. Sci. 6:287–311
    [Google Scholar]
  49. Huberman AD, Niell CM. 2011. What can mice tell us about how vision works?. Trends Neurosci 34:9464–73
    [Google Scholar]
  50. Jeon C-J, Strettoi E, Masland RH. 1998. The major cell populations of the mouse retina. J. Neurosci. 18:218936–46
    [Google Scholar]
  51. Joesch M, Meister M. 2016. A neuronal circuit for colour vision based on rod-cone opponency. Nature 532:7598236–39
    [Google Scholar]
  52. Jones BW, Watt CB, Frederick JM, Baehr W, Chen C-K et al. 2003. Retinal remodeling triggered by photoreceptor degenerations. J. Comp. Neurol. 464:11–16
    [Google Scholar]
  53. Kastner DB, Baccus SA. 2014. Insights from the retina into the diverse and general computations of adaptation, detection, and prediction. Curr. Opin. Neurobiol. 25:63–69
    [Google Scholar]
  54. Koskela S, Turunen T, Ala-Laurila P. 2020. Mice reach higher visual sensitivity at night by using a more efficient behavioral strategy. Curr. Biol. 30:142–53.e4
    [Google Scholar]
  55. Kuo SP, Schwartz GW, Rieke F. 2016. Nonlinear spatiotemporal integration by electrical and chemical synapses in the retina. Neuron 90:2320–32
    [Google Scholar]
  56. Lee BB, Martin PR, Grünert U. 2010. Retinal connectivity and primate vision. Prog. Retin. Eye Res. 29:6622–39
    [Google Scholar]
  57. Liang J, Williams DR, Miller DT. 1997. Supernormal vision and high-resolution retinal imaging through adaptive optics. J. Opt. Soc. Am. A 14:112884–92
    [Google Scholar]
  58. Manookin MB, Patterson SS, Linehan CM. 2018. Neural mechanisms mediating motion sensitivity in parasol ganglion cells of the primate retina. Neuron 97:61327–40.e4
    [Google Scholar]
  59. Marcos S, Werner JS, Burns SA, Merigan WH, Artal P et al. 2017. Vision science and adaptive optics, the state of the field. Vis. Res. 132:3–33
    [Google Scholar]
  60. Masland RH. 2012. The neuronal organization of the retina. Neuron 76:2266–80
    [Google Scholar]
  61. Massey SC. 1990. Cell types using glutamate as a neurotransmitter in the vertebrate retina. Prog. Retin. Res. 9:399–425
    [Google Scholar]
  62. Matsumoto A, Briggman KL, Yonehara K. 2019. Spatiotemporally asymmetric excitation supports mammalian retinal motion sensitivity. Curr. Biol. 29:193277–88.e5
    [Google Scholar]
  63. Montalbán-Soler L, Alarcón-Martínez L, Jiménez-López M, Salinas-Navarro M, Galindo-Romero C et al. 2012. Retinal compensatory changes after light damage in albino mice. Mol. Vis. 18:675–93
    [Google Scholar]
  64. Müller B, Peichl L. 1989. Topography of cones and rods in the tree shrew retina: photoreceptor distribution in tree shrew retina. J. Comp. Neurol. 282:4581–94
    [Google Scholar]
  65. Nagar S, Krishnamoorthy V, Cherukuri P, Jain V, Dhingra NK. 2009. Early remodeling in an inducible animal model of retinal degeneration. Neuroscience 160:2517–29
    [Google Scholar]
  66. Nakajima Y, Iwakabe H, Akazawa C, Nawa H, Shigemoto R et al. 1993. Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4-phosphonobutyrate. J. Biol. Chem. 268:1611868–73
    [Google Scholar]
  67. O'Brien EE, Greferath U, Fletcher EL. 2014. The effect of photoreceptor degeneration on ganglion cell morphology: ganglion cells in retinal degeneration. J. Comp. Neurol. 522:51155–70
    [Google Scholar]
  68. O'Brien J, Bloomfield SA. 2018. Plasticity of retinal gap junctions: roles in synaptic physiology and disease. Annu. Rev. Vis. Sci. 4:79–100
    [Google Scholar]
  69. Ölveczky BP, Baccus SA, Meister M. 2007. Retinal adaptation to object motion. Neuron 56:4689–700
    [Google Scholar]
  70. O'Steen WK, Spencer RL, Bare DJ, McEwen BS. 1995. Analysis of severe photoreceptor loss and Morris water-maze performance in aged rats. Behav. Brain Res. 68:2151–58
    [Google Scholar]
  71. Østerberg G. 1937. Topography of the layer of rods and cones in the human retina. J. Am. Med. Assoc. 108:3232
    [Google Scholar]
  72. Palanker D, Goetz G. 2018. Restoring sight with retinal prostheses. Phys. Today 71:726–32
    [Google Scholar]
  73. Peng Y-W, Senda T, Hao Y, Matsuno K, Wong F. 2003. Ectopic synaptogenesis during retinal degeneration in the Royal College of Surgeons rat. Neuroscience 119:3813–20
    [Google Scholar]
  74. Pfeiffer RL, Marc RE, Jones BW. 2020. Persistent remodeling and neurodegeneration in late-stage retinal degeneration. Prog. Retin. Eye Res. 74:100771
    [Google Scholar]
  75. Puller C, Ivanova E, Euler T, Haverkamp S, Schubert T. 2013. OFF bipolar cells express distinct types of dendritic glutamate receptors in the mouse retina. Neuroscience 243:136–48
    [Google Scholar]
  76. Ratnam K, Carroll J, Porco TC, Duncan JL, Roorda A. 2013. Relationship between foveal cone structure and clinical measures of visual function in patients with inherited retinal degenerations. Investig. Ophthalmol. Vis. Sci. 54:85836–47
    [Google Scholar]
  77. Richards A, Emondi AA, Rohrer B. 2006. Long-term ERG analysis in the partially light-damaged mouse retina reveals regressive and compensatory changes. Vis. Neurosci. 23:191–97
    [Google Scholar]
  78. Roska B, Sahel J-A. 2018. Restoring vision. Nature 557:7705359–67
    [Google Scholar]
  79. Roy S, Field GD. 2019. Dopaminergic modulation of retinal processing from starlight to sunlight. J. Pharmacol. Sci. 140:186–93
    [Google Scholar]
  80. Sajdak B, Sulai YN, Langlo CS, Luna G, Fisher SK et al. 2016. Noninvasive imaging of the thirteen-lined ground squirrel photoreceptor mosaic. Vis. Neurosci. 33:e003
    [Google Scholar]
  81. Sanes JR, Masland RH. 2015. The types of retinal ganglion cells: current status and implications for neuronal classification. Annu. Rev. Neurosci. 38:221–46
    [Google Scholar]
  82. Schwartz GW, Okawa H, Dunn FA, Morgan JL, Kerschensteiner D et al. 2012. The spatial structure of a nonlinear receptive field. Nat. Neurosci. 15:111572–80
    [Google Scholar]
  83. Seiple W, Holopigian K, Szlyk JP, Greenstein VC. 1995. The effects of random element loss on letter identification: implications for visual acuity loss in patients with retinitis pigmentosa. Vis. Res. 35:142057–66
    [Google Scholar]
  84. Seung HS, Sümbül U. 2014. Neuronal cell types and connectivity: lessons from the retina. Neuron 83:61262–72
    [Google Scholar]
  85. Shapley R, Enroth-Cugell C. 1984. Visual adaptation and retinal gain controls. Prog. Retin. Res. 3:263–346
    [Google Scholar]
  86. Shekhar K, Lapan SW, Whitney IE, Tran NM, Macosko EZ et al. 2016. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166:51308–23.e30
    [Google Scholar]
  87. Shen N, Wang B, Soto F, Kerschensteiner D. 2020. Homeostatic plasticity shapes the retinal response to photoreceptor degeneration. Curr. Biol. 30:101916–26.e3
    [Google Scholar]
  88. Sher A, Jones BW, Huie P, Paulus YM, Lavinsky D et al. 2013. Restoration of retinal structure and function after selective photocoagulation. J. Neurosci. 33:166800–8
    [Google Scholar]
  89. Simoncelli EP, Olshausen BA. 2001. Natural image statistics and neural representation. Annu. Rev. Neurosci. 24:1193–216
    [Google Scholar]
  90. Simpson JI. 1984. The accessory optic system. Annu. Rev. Neurosci. 7:13–41
    [Google Scholar]
  91. Slaughter M, Miller R. 1981. 2-Amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. Science 211:4478182–85
    [Google Scholar]
  92. Strettoi E, Porciatti V, Falsini B, Pignatelli V, Rossi C. 2002. Morphological and functional abnormalities in the inner retina of the rd/rd mouse. J. Neurosci. 22:135492–504
    [Google Scholar]
  93. Takahashi VKL, Takiuti JT, Jauregui R, Tsang SH. 2018. Gene therapy in inherited retinal degenerative diseases, a review. Ophthalmic Genet 39:5560–68
    [Google Scholar]
  94. Taylor WR, Smith RG. 2012. The role of starburst amacrine cells in visual signal processing. Vis. Neurosci. 29:173–81
    [Google Scholar]
  95. Tian N. 2004. Visual experience and maturation of retinal synaptic pathways. Vis. Res. 44:283307–16
    [Google Scholar]
  96. Trapani I, Auricchio A. 2018. Seeing the light after 25 years of retinal gene therapy. Trends Mol. Med. 24:8669–81
    [Google Scholar]
  97. Turner MH, Schwartz GW, Rieke F 2018. Receptive field center-surround interactions mediate context-dependent spatial contrast encoding in the retina. eLife 7:e38841
    [Google Scholar]
  98. Vaney DI. 1994. Patterns of neuronal coupling in the retina. Prog. Retin. Eye Res. 13:1301–55
    [Google Scholar]
  99. Veleri S, Lazar CH, Chang B, Sieving PA, Banin E, Swaroop A. 2015. Biology and therapy of inherited retinal degenerative disease: insights from mouse models. Dis. Model Mech. 8:2109–29
    [Google Scholar]
  100. Volland S, Esteve-Rudd J, Hoo J, Yee C, Williams DS 2015. A comparison of some organizational characteristics of the mouse central retina and the human macula. PLOS ONE 10:4e0125631
    [Google Scholar]
  101. Wachtmeister L. 1998. Oscillatory potentials in the retina: what do they reveal. Prog. Retin. Eye Res. 17:4485–521
    [Google Scholar]
  102. Wang T, Pahlberg J, Cafaro J, Frederiksen R, Cooper AJ et al. 2019. Activation of rod input in a model of retinal degeneration reverses retinal remodeling and induces formation of functional synapses and recovery of visual signaling in the adult retina. J. Neurosci. 39:346798–810
    [Google Scholar]
  103. Wässle H. 2004. Parallel processing in the mammalian retina. Nat. Rev. Neurosci. 5:10747–57
    [Google Scholar]
  104. Wässle H, Puller C, Muller F, Haverkamp S. 2009. Cone contacts, mosaics, and territories of bipolar cells in the mouse retina. J. Neurosci. 29:1106–17
    [Google Scholar]
  105. Weber AI, Krishnamurthy K, Fairhall AL. 2019. Coding principles in adaptation. Annu. Rev. Vis. Sci. 5:427–49
    [Google Scholar]
  106. Wei W. 2018. Neural mechanisms of motion processing in the mammalian retina. Annu. Rev. Vis. Sci. 4:165–92
    [Google Scholar]
  107. Wei W, Feller MB. 2011. Organization and development of direction-selective circuits in the retina. Trends Neurosci 34:12638–45
    [Google Scholar]
  108. Wong ROL, Meister M, Shatz CJ. 1993. Transient period of correlated bursting activity during development of the mammalian retina. Neuron 11:5923–38
    [Google Scholar]
  109. Wood EH, Tang PH, De la Huerta I, Korot E, Muscat S et al. 2019. Stem cell therapies, gene-based therapies, optogenetics, and retinal prosthetics: current state and implications for the future. Retina 39:5820–35
    [Google Scholar]
  110. Xu J, Morris LM, Michalakis S, Biel M, Fliesler SJ et al. 2012. CNGA3 deficiency affects cone synaptic terminal structure and function and leads to secondary rod dysfunction and degeneration. Investig. Ophthalmol. Vis. Sci. 53:31117–29
    [Google Scholar]
  111. Yamagiwa Y, Kurata M, Satoh H. 2020. Histological features of postnatal development of the eye in white rabbits. Toxicol. Pathol. 49:3419–37
    [Google Scholar]
  112. Yue L, Weiland JD, Roska B, Humayun MS. 2016. Retinal stimulation strategies to restore vision: fundamentals and systems. Prog. Retin. Eye Res. 53:21–47
    [Google Scholar]
/content/journals/10.1146/annurev-vision-100119-124713
Loading
/content/journals/10.1146/annurev-vision-100119-124713
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error