Skip to main content

Advertisement

Log in

The effect of combined pollution by PAHs and heavy metals on the topsoil microbial communities of Spolic Technosols of the lake Atamanskoe, Southern Russia

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The contamination with organic and inorganic pollutants changes significantly soil microbial community structure. These shifts indicate anthropogenic pressure and help to discover new possibilities for soil remediation. In this study, the microbial community structure of Spolic Technosols formed at the territory of a former industrial sludge reservoir near the Kamensk-Shakhtinsky (Southern Russia) was studied using a metagenomics approach. The studied soils contain high concentrations of heavy metals (HM) (up to 72,900 mg kg−1) and 16 priority polycyclic aromatic hydrocarbons (PAHs) (up to 6670 mg kg−1). Its microbial communities demonstrate an excellent adaptability level reflected in their complexity and diversity. As shown by the high values of alpha diversity indices (Shannon values up to 10.1, Chao1 values from 1430 to 4273), instead of decreasing quantitatively and qualitatively on the systemic level, microbial communities tend to undergo complex redistribution. Regardless of contamination level, the share of Actinobacteria and Proteobacteria was consistently high and varied from 20 to 50%. Following the results of the Mann–Whitney U test, there were significant changes of less abundant phyla. The abundance of oligotrophic bacteria from Gemmatimonadetes and Verrucomicrobia phyla and autotrophic bacteria (e.g., Nitrospira) decreased due to the high PAH’s level. And abundance of Firmicutes and amoebae-associated bacteria such as TM6 and soil Chlamydia increased in highly contaminated plots. In the Spolic Technosols studied, the influence of factors on the microbial community composition decreased from PAHs concentration to soil characteristics (organic carbon content) and phylum–phylum interactions. The high concentrations of HMs influenced weakly on the microbial community composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  • Alekseev, I., Zverev, A., & Abakumov, E. (2021). Organic carbon and microbiome in tundra and forest–tundra permafrost soils, southern Yamal, Russia. Polar Research, 40.

  • Alekseev, I., Zverev, A., & Abakumov, E. (2020). Microbial communities in permafrost soils of Larsemann hills, Eastern Antarctica: Environmental controls and effect of human impact. Microorganisms, 8(8), 1202.

    CAS  Google Scholar 

  • Amplicon, P. C. R., Clean‐Up, P. C. R., & Index, P. C. R. (2013). 16s metagenomic sequencing library preparation. 1–28.

  • Andrews, J. H., & Harris, R. F. (1986). R-and K-selection and microbial ecology. Advances in Microbial Ecology, 99–147.

  • Bates, S. T., Berg-Lyons, D., Caporaso, J. G., Walters, W. A., Knight, R., & Fierer, N. (2011). Examining the global distribution of dominant archaeal populations in soil. ISME Journal, 5(5), 908–917.

    CAS  Google Scholar 

  • Bauer, T. V., Linnik, V. G., Minkina, T. M., Mandzhieva, S. S., & Nevidomskaya, D. G. (2018). Ecological–geochemical studies of technogenic soils in the flood plain landscapes of the Seversky Donets, Lower Don Basin. Geochemistry International, 56(10), 992–1002.

    CAS  Google Scholar 

  • Bergmann, G. T., Bates, S. T., Eilers, K. G., Lauber, C. L., Caporaso, J. G., Walters, W. A., et al. (2011). The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biology and Biochemistry, 43(7), 1450–1455.

    CAS  Google Scholar 

  • Bourceret, A., Leyval, C., Faure, P., Lorgeoux, C., & Cébron, A. (2018). High PAH degradation and activity of degrading bacteria during alfalfa growth where a contrasted active community developed in comparison to unplanted soil. Environmental Science and Pollution Research, 25(29), 29556–29571.

    CAS  Google Scholar 

  • Brzeszcz, J., Steliga, T., Kapusta, P., Turkiewicz, A., & Kaszycki, P. (2016). R-strategist versus K-strategist for the application in bioremediation of hydrocarbon-contaminated soils. International Biodeterioration and Biodegradation, 106, 41–52.

    CAS  Google Scholar 

  • Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335–336.

    CAS  Google Scholar 

  • Chodak, M., Gołębiewski, M., Morawska-Płoskonka, J., Kuduk, K., & Niklińska, M. (2013). Diversity of microorganisms from forest soils differently polluted with heavy metals. Applied Soil Ecology, 64, 7–14.

    Google Scholar 

  • Crits-Christoph, A., Robinson, C. K., Barnum, T., Fricke, W. F., Davila, A. F., Jedynak, B., et al. (2013). Colonization patterns of soil microbial communities in the Atacama Desert. Microbiome, 1(1), 1–13.

    Google Scholar 

  • Davis, M. R., Zhao, F. J., & McGrath, S. P. (2004). Pollution-induced community tolerance of soil microbes in response to a zinc gradient. Environmental Toxicology and Chemistry: An International Journal, 23(11), 2665–2672.

    CAS  Google Scholar 

  • Delafont, V., Rodier, M. H., Maisonneuve, E., & Cateau, E. (2018). Vermamoeba vermiformis: A free-living amoeba of interest. Microbial Ecology, 76(4), 991–1001.

    Google Scholar 

  • Delafont, V., Samba-Louaka, A., Bouchon, D., Moulin, L., & Héchard, Y. (2015). Shedding light on microbial dark matter: A TM 6 bacterium as natural endosymbiont of a free-living amoeba. Environmental Microbiology Reports, 7(6), 970–978.

    CAS  Google Scholar 

  • DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., et al. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 72(7), 5069–5072.

    CAS  Google Scholar 

  • Directive document 52.10.556–95. Methodical Instructions. Definition of Polluting Substances in Sediments and Suspension. Roshydromet, Moscow (2002) (in Russian).

  • Dolinšek, J., Lagkouvardos, I., Wanek, W., Wagner, M., & Daims, H. (2013). Interactions of nitrifying bacteria and heterotrophs: Identification of a Micavibrio-like putative predator of Nitrospira spp. Applied and Environmental Microbiology, 79(6), 2027–2037.

    Google Scholar 

  • Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27(16), 2194–2200.

    CAS  Google Scholar 

  • Epelde, L., Lanzén, A., Martín, I., Virgel, S., Mijangos, I., Besga, G., & Garbisu, C. (2019). The microbiota of technosols resembles that of a nearby forest soil three years after their establishment. Chemosphere, 220, 600–610.

    CAS  Google Scholar 

  • Glazovskaya, M. A. (2012). Geochemical barriers in plain soils: Their typology, functional features, and ecological significance. Vestn. Mosk. Univ., Ser, 5, 8–14.

    Google Scholar 

  • Gorovtsov, A., Minkina, T. M., Morin, T., Zamulina, I. V., Mandzhieva, S. S., Sushkova, S. N., & Rajput, V. (2019). Ecological evaluation of polymetallic soil quality: The applicability of culture-dependent methods of bacterial communities studying. Journal of Soils and Sediments, 19(8), 3127–3138.

    CAS  Google Scholar 

  • GOST 12536–79 (1979). Soils. Methods for laboratory determination of granulometric (grain) and micro-aggregate composition.—Introduction. 1980–07–01. Moscow: Standartinform. (In Russian).

  • Harantová, L., Mudrák, O., Kohout, P., Elhottová, D., Frouz, J., & Baldrian, P. (2017). Development of microbial community during primary succession in areas degraded by mining activities. Land Degradation and Development, 28(8), 2574–2584.

    Google Scholar 

  • Hill, T. C., Walsh, K. A., Harris, J. A., & Moffett, B. F. (2003). Using ecological diversity measures with bacterial communities. FEMS Microbiology Ecology, 43(1), 1–11.

    CAS  Google Scholar 

  • Holmes, A. J., Tujula, N. A., Holley, M., Contos, A., James, J. M., Rogers, P., & Gillings, M. R. (2001). Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves. Australia. Environmental Microbiology, 3(4), 256–264.

    CAS  Google Scholar 

  • Horn, M., Wagner, M., Müller, K. D., Schmid, E. N., Fritsche, T. R., Schleifer, K. H., & Michel, R. (2000). Neochlamydia hartmannellae gen. nov., sp. Nov.(Parachlamydiaceae), an endoparasite of the amoeba Hartmannella vermiformisThe GenBank accession number for the sequence reported in this paper is AF177275. Microbiology, 146(5), 1231–1239.

    CAS  Google Scholar 

  • Horn, M. (2008). Chlamydiae as symbionts in eukaryotes. Annual Review of Microbiology, 62, 113–131.

    CAS  Google Scholar 

  • ISO 10381–1, (2002). Soil quality. Sampling. Part 1. Guidance on the design of sampling programs.

  • ISO 13859–2014, (2014). Soil Quality. Determination of Polycyclic Aromatic Hydrocarbons (PAH) by Gas Chromatography (GC) and High Performance Liquid Chromatography (HPLC).

  • ISO 13877–2005, (2005). Soil quality-determination of polynuclear aromatic hydrocarbons—method using high performance liquid chromatography.

  • Jariwala, S., Redding, L., & Hewitt, D. (2017). The severely under-recognized public health risk of strongyloidiasis in North American cities—A One Health approach. Zoonoses and Public Health. https://doi.org/10.1111/zph.12371

    Article  Google Scholar 

  • Jiao, S., Zhang, Z., Yang, F., Lin, Y., Chen, W., & Wei, G. (2017). Temporal dynamics of microbial communities in microcosms in response to pollutants. Molecular Ecology, 26(3), 923–936.

    CAS  Google Scholar 

  • Jost, L., & Banos, T. (2006). Entropy and diversity. Oikos, 113(2), 363–375.

    Google Scholar 

  • Kandeler, F., Kampichler, C., & Horak, O. (1996). Influence of heavy metals on the functional diversity of soil microbial communities. Biology and Fertility of Soils, 23(3), 299–306.

    CAS  Google Scholar 

  • Kebbi-Beghdadi, C., & Greub, G. (2014). Importance of amoebae as a tool to isolate amoeba-resisting microorganisms and for their ecology and evolution: The C hlamydia paradigm. Environmental Microbiology Reports, 6(4), 309–324.

    Google Scholar 

  • Keith, A. M., Schmidt, O., & McMahon, B. J. (2016). Soil stewardship as a nexus between Ecosystem Services and One Health. Ecosystem Services. https://doi.org/10.1016/j.ecoser.2015.11.008

    Article  Google Scholar 

  • Lauber, C. L., Hamady, M., Knight, R., & Fierer, N. (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 75(15), 5111–5120.

    CAS  Google Scholar 

  • Liu, J., He, X. X., Lin, X. R., Chen, W. C., Zhou, Q. X., Shu, W. S., & Huang, L. N. (2015). Ecological effects of combined pollution associated with e-waste recycling on the composition and diversity of soil microbial communities. Environmental Science and Technology, 49(11), 6438–6447.

    CAS  Google Scholar 

  • Mackenzie, J. S., & Jeggo, M. (2019). The one health approach-why is it so important? Tropical Medicine and Infectious Disease. https://doi.org/10.3390/tropicalmed4020088

    Article  Google Scholar 

  • Maila, M. P., Randima, P., Drønen, K., & Cloete, T. E. (2006). Soil microbial communities: Influence of geographic location and hydrocarbon pollutants. Soil Biology and Biochemistry, 38(2), 303–310.

    CAS  Google Scholar 

  • Minkina, T., Nevidomskaya, D., Bauer, T., Shuvaeva, V., Soldatov, A., Mandzhieva, S., et al. (2018). Determining the speciation of Zn in soils around the sediment ponds of chemical plants by XRD and XAFS spectroscopy and sequential extraction. Science of the Total Environment, 634, 1165–1173.

    CAS  Google Scholar 

  • Minkina, T., Nevidomskaya, D., Shuvaeva, V., Bauer, T., Soldatov, A., Mandzhieva, S., et al. (2019). Molecular characterization of Zn in Technosols using X-ray absorption spectroscopy. Applied Geochemistry, 104, 168–175.

    CAS  Google Scholar 

  • Minkina, T., Konstantinova, E., Bauer, T., Mandzhieva, S., Sushkova, S., Chaplygin, V., Burachevskaya, M., Nazarenko, O., Kizilkaya, R., Gülser, C., & Maksimov, A. (2021). Environmental and human health risk assessment of potentially toxic elements in soils around the largest coal-fired power station in Southern Russia. Environmental Geochemistry and Health, 43(6), 2285-2300.

  • Müller, A. K., Westergaard, K., Christensen, S., & Sørensen, S. J. (2001). The effect of long-term mercury pollution on the soil microbial community. FEMS Microbiology Ecology, 36(1), 11–19.

    Google Scholar 

  • Perel’man, A. I. (1967). Geochemistry of epigenesis. Plenum Press.

    Google Scholar 

  • Pires, C., Franco, A. R., Pereira, S. I., Henriques, I., Correia, A., Magan, N., & Castro, P. M. (2017). Metal (loid)-contaminated soils as a source of culturable heterotrophic aerobic bacteria for remediation applications. Geomicrobiology Journal, 34(9), 760–768.

    CAS  Google Scholar 

  • Procedure of measurements benz(a)pyrene content in soils, sediments and sludges by highly effective liquid chromatography method (2008). Certificate 27–08: Moscow. 27p. (in Russian).

  • Rudnick, R. L., Gao, S., Holland, H. D., & Turekian, K. K. (2003). Composition of the continental crust. The Crust, 3, 1–64.

    Google Scholar 

  • Santos, E. S., Abreu, M. M., Macías, F., & de Varennes, A. (2016). Chemical quality of leachates and enzymatic activities in Technosols with gossan and sulfide wastes from the São Domingos mine. Journal of Soils and Sediments, 16(4), 1366–1382.

    CAS  Google Scholar 

  • Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., et al. (2009). Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23), 7537–7541.

    CAS  Google Scholar 

  • Schneider, A. R., Gommeaux, M., Duclercq, J., Fanin, N., Conreux, A., Alahmad, A., & Marin, B. (2017). Response of bacterial communities to Pb smelter pollution in contrasting soils. Science of the Total Environment, 605, 436–444.

    Google Scholar 

  • Shi, Y., Queller, D. C., Tian, Y., Zhang, S., Yan, Q., He, Z., et al. (2020). The Ecology and Evolution of Amoeba-Bacterium Interactions. Applied and Environmental Microbiology, 87(2), e0186620.

    Google Scholar 

  • Šimonovičová, A., Ferianc, P., Vojtková, H., Pangallo, D., Hanajík, P., Kraková, L., et al. (2017). Alkaline technosol contaminated by former mining activity and its culturable autochthonous microbiota. Chemosphere, 171, 89–96.

    Google Scholar 

  • Stefanowicz, A. M., Kapusta, P., Zubek, S., Stanek, M., & Woch, M. W. (2020). Soil organic matter prevails over heavy metal pollution and vegetation as a factor shaping soil microbial communities at historical Zn–Pb mining sites. Chemosphere, 240, 124922.

    CAS  Google Scholar 

  • Sushkova, S. N., Minkina, T. M., Turina, I. G., Mandzhieva, S. S., Bauer, T. V., Kizilkaya, R., & Zamulina, I. V. (2017). Monitoring of benzo[a]pyrene content in soils under the effect of long-term technogenic pollution. Journal of Geochemical Exploration, 174, 100–106.

    CAS  Google Scholar 

  • Sushkova, S., Minkina, T., Tarigholizadeh, S., Antonenko, E., Konstantinova E., Gülser, C., Dudnikova, T., Barbashev, A., & Kizilkaya R. (2020). PAHs accumulation in soil-plant system of Phragmites australis Cav. in soil under long-term chemical contamination. Eurasian Journal of Soil Science (EJSS), 9(3), 242–253.

  • Sushkova, S., Minkina, T., Tarigholizadeh, S., Rajput, V., Fedorenko, A., Antonenko, E., Dudnikova, T., Chernikova, N., Yadav, B.K., & Batukaev, A. (2021). Soil PAHs contamination effect on the cellular and subcellular organelle changes of Phragmites australis Cav. Environmental Geochemistry and Health, 43(6), 2407–2421.

  • Thompson, I. P., Bailey, M. J., Ellis, R. J., Maguire, N., & Meharg, A. A. (1998). Response of soil microbial communities to single and multiple doses of an organic pollutant. Soil Biology and Biochemistry, 31(1), 95–105.

    Google Scholar 

  • Tripathi, B. M., Kim, M., Singh, D., Lee-Cruz, L., Lai-Hoe, A., Ainuddin, A. N., & Adams, J. M. (2012). Tropical soil bacterial communities in Malaysia: PH dominates in the equatorial tropics too. Microbial Ecology, 64(2), 474–484.

    Google Scholar 

  • Uzarowicz, Ł, Wolińska, A., Błońska, E., Szafranek-Nakonieczna, A., Kuźniar, A., Słodczyk, Z., & Kwasowski, W. (2020). Technogenic soils (Technosols) developed from mine spoils containing Fe sulphides: Microbiological activity as an indicator of soil development following land reclamation. Applied Soil Ecology, 156, 103699.

    Google Scholar 

  • Vinogradov, A. P. (1957). Geochemistry of rare and trace elements in soils. RAN.

    Google Scholar 

  • Viti, C., Mini, A., Ranalli, G., Lustrato, G., & Giovannetti, L. (2006). Response of microbial communities to different doses of chromate in soil microcosms. Applied Soil Ecology, 34(2–3), 125–139.

    Google Scholar 

  • Winding, A., Modrzyński, J. J., Christensen, J. H., Brandt, K. K., & Mayer, P. (2019). Soil bacteria and protists show different sensitivity to polycyclic aromatic hydrocarbons at controlled chemical activity. FEMS Microbiology Letters, 366(17), fnz214.

    CAS  Google Scholar 

  • Wolińska, A., Gałązka, A., Kuźniar, A., Goraj, W., Jastrzębska, N., Grządziel, J., & Stępniewska, Z. (2018). Catabolic fingerprinting and diversity of bacteria in mollic gleysol contaminated with petroleum substances. Applied Sciences, 8(10), 1970.

    Google Scholar 

  • Xu, X., Zhang, Z., Hu, S., Ruan, Z., Jiang, J., Chen, C., & Shen, Z. (2017). Response of soil bacterial communities to lead and zinc pollution revealed by Illumina MiSeq sequencing investigation. Environmental Science and Pollution Research, 24(1), 666–675.

    Google Scholar 

  • Yeoh, Y. K., Sekiguchi, Y., Parks, D. H., & Hugenholtz, P. (2016). Comparative genomics of candidate phylum TM6 suggests that parasitism is widespread and ancestral in this lineage. Molecular Biology and Evolution, 33(4), 915–927.

    CAS  Google Scholar 

  • Zhou, Y., Hartemink, A. E., Shi, Z., Liang, Z., & Lu, Y. (2019). Land use and climate change effects on soil organic carbon in North and Northeast China. Science of the Total Environment, 647, 1230–1238.

    CAS  Google Scholar 

  • Zornoza, R., Acosta, J. A., Faz, A., & Bååth, E. (2016). Microbial growth and community structure in acid mine soils after addition of different amendments for soil reclamation. Geoderma, 272, 64–72.

    CAS  Google Scholar 

Download references

Acknowledgements

The present research was funded by the Russian Science Foundation through Project No. 19-74-10046. We thank the centers for collective use of Southern Federal University "Modern Microscopy" and "High Technology" for performing chemical-analytical experiments and center for collective use of Kazan Federal University "Interdisciplinary Center of Shared Facilities" for performing metagenomics analysis.

Author information

Authors and Affiliations

Authors

Contributions

AG contributed to conceptualization, formulation of a research problem, and writing. KD contributed to data processing, methodology, discussion, and writing. TM contributed to data curation and writing—reviewing. SS contributed to writing, analytical work, HPLC, and data performing. TG conducted experiments. TD contributed to visualization and statistical processing, and methodology. AB conducted experiments and contributed to data creating and experiments design. IS contributed to writing—review and editing. VR contributed to bioinformatics, experiment design, writing—review, and editing. AL contributed to DNA extraction and bioinformatics. VR contributed to data processing. YK contributed to writing—review and editing.

Corresponding author

Correspondence to Svetlana Sushkova.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest in this work.

Ethical approval

It is not applicable since the manuscript has not been involved in the use of any animal or human data or tissue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorovtsov, A., Demin, K., Sushkova, S. et al. The effect of combined pollution by PAHs and heavy metals on the topsoil microbial communities of Spolic Technosols of the lake Atamanskoe, Southern Russia. Environ Geochem Health 44, 1299–1315 (2022). https://doi.org/10.1007/s10653-021-01059-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-01059-x

Keywords

Navigation