Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lipid flippases as key players in plant adaptation to their environment

Abstract

Lipid flippases (P4 ATPases) are active transporters that catalyse the translocation of lipids between the two sides of the biological membranes in the secretory pathway. This activity modulates biological membrane properties, contributes to vesicle formation, and is the trigger for lipid signalling events, which makes P4 ATPases essential for eukaryotic cell survival. Plant P4 ATPases (also known as aminophospholipid ATPases (ALAs)) are crucial for plant fertility and proper development, and are involved in key adaptive responses to biotic and abiotic stress, including chilling tolerance, heat adaptation, nutrient deficiency responses and pathogen defence. While ALAs present many analogies to mammalian and yeast P4 ATPases, they also show characteristic features as the result of their independent evolution. In this Review, the main properties, roles, regulation and mechanisms of action of ALA proteins are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The diversity of plant lipids.
Fig. 2: Lipid transporters in eukaryotic cells.
Fig. 3: Phylogenetic classification of P4 ATPases.
Fig. 4: Cellular functions of lipid flippases.
Fig. 5: Expression pattern of Arabidopsis P4 ATPases.

Similar content being viewed by others

References

  1. van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Nakamura, Y. Plant phospholipid diversity: emerging functions in metabolism and protein–lipid interactions. Trends Plant Sci. 22, 1027–1040 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Reszczyńska, E. & Hanaka, A. Lipids composition in plant membranes. Cell Biochem. Biophys. 78, 401–414 (2020).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Hölzl, G. & Dörmann, P. Chloroplast lipids and their biosynthesis. Annu. Rev. Plant Biol. 70, 51–81 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Huby, E., Napier, J. A., Baillieul, F., Michaelson, L. V. & Dhondt‐Cordelier, S. Sphingolipids: towards an integrated view of metabolism during the plant stress response. N. Phytol. 225, 659–670 (2020).

    Article  Google Scholar 

  6. Gronnier, J., Germain, V. V., Gouguet, P., Cacas, J.-L. & Mongrand, S. S. GIPC: glycosyl inositol phospho ceramides, the major sphingolipids on earth. Plant Signal. Behav. 11, e1152438 (2016).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Ferrer, A., Altabella, T. & Boronat, A. Emerging roles for conjugated sterols in plants. Prog. Lipid Res. 67, 27–37 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Hankins, H. M., Baldridge, R. D., Xu, P. & Graham, T. R. Role of flippases, scramblases and transfer proteins in phosphatidylserine subcellular distribution. Traffic 16, 35–47 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. van der Mark, V., Elferink, R. & Paulusma, C. P4 ATPases: flippases in health and disease. Int. J. Mol. Sci. 14, 7897–7922 (2013).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Kay, J. G & Grinstein, S. In Lipid-Mediated Protein Signaling. Advances in Experimental Medicine and Biology Vol. 991 (ed. Capelluto, D.) 177–194 (Springer, 2013).

  11. Andersen, J. P. et al. P4-ATPases as phospholipid flippases—structure, function, and enigmas. Front. Physiol. 7, 275 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  12. O’brien, I. E. W., Baguley, B. C., Murray, B. G., Morris, B. A. M. & Ferguson, I. B. Early stages of the apoptotic pathway in plant cells are reversible. Plant J. 13, 803–814 (1998).

    Article  Google Scholar 

  13. O’Brien, I. E. W. W., Reutelingsperger, C. P. M. M. & Holdaway, K. M. Annexin-V and TUNEL use in monitoring the progression of apoptosis in plants. Cytometry 29, 28–33 (1997).

    Article  PubMed  Google Scholar 

  14. Takeda, Y. & Kasamo, K. Transmembrane topography of plasma membrane constituents in mung bean (Vigna radiata L.) hypocotyl cells: I. Transmembrane distribution of phospholipids. Biochim. Biophys. Acta 1513, 38–48 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Ning, S., Song, Y. & Van Damme, P. Characterization of the early stages of programmed cell death in maize root cells by using comet assay and the combination of cell electrophoresis with annexin binding. Electrophoresis 23, 2096–2102 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Xu, C., Chen, K. & Ferguson, I. B. Programmed cell death features in apple suspension cells under low oxygen culture. J. Zhejiang Univ. Sci. 5, 137–143 (2004).

    Article  PubMed  Google Scholar 

  17. Vance, J. E. & Steenbergen, R. Metabolism and functions of phosphatidylserine. Prog. Lipid Res. 44, 207–234 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Andersson, M. X., Larsson, K. E., Tjellstrom, H., Liljenberg, C. & Sandelius, A. S. Phosphate-limited oat: the plasma membrane and the tonoplast as major target for phospholipid-to-glycolipid replacement and stimulation of phospholipases in the plasma membrane. J. Biol. Chem. 280, 27578–27586 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Pomorski, T., Hrafnsdóttir, S., Devaux, P. F. & van Meer, G. Lipid distribution and transport across cellular membranes. Semin. Cell Dev. Biol. 12, 139–148 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Pomorski, T. G. & Menon, A. K. Lipid somersaults: uncovering the mechanisms of protein-mediated lipid flipping. Prog. Lipid Res. 64, 69–84 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Williamson, P. Phospholipid scramblases. Lipid Insights 8, 41–44 (2015).

    PubMed  Google Scholar 

  22. Palmgren, M. G. & Nissen, P. P-type ATPases. Annu. Rev. Biophys. 40, 243–266 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Nintemann, S. J., Palmgren, M. & López-Marqués, R. L. Catch you on the flip side: a critical review of flippase mutant phenotypes. Trends Plant Sci. 24, 468–478 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Shin, H.-W. & Takatsu, H. Substrates of P4-ATPases: beyond aminophospholipids (phosphatidylserine and phosphatidylethanolamine). FASEB J. 33, 3087–3096 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Roland, B. P. et al. Yeast and human P4-ATPases transport glycosphingolipids using conserved structural motifs. J. Biol. Chem. 294, 1794–1806 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Hua, Z., Fatheddin, P. & Graham, T. R. An essential subfamily of Drs2p-related P-type ATPases is required for protein trafficking between Golgi complex and endosomal/vacuolar system. Mol. Biol. Cell 13, 3162–3177 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Axelsen, K. B. & Palmgren, M. G. Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiol. 126, 696–706 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Okamura, H., Yasuhara, J. C., Fambrough, D. M. & Takeyasu, K. P-type ATPases in Caenorhabditis and Drosophila: implications for evolution of the P-type ATPase subunit families with special reference to the Na,K-ATPase and H,K-ATPase subgroup. J. Membr. Biol. 191, 13–24 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Folmer, D. E., Elferink, R. P. J. O. & Paulusma, C. C. P4 ATPases - Lipid flippases and their role in disease. Biochim. Biophys. Acta 1791, 628–635 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Clausen, M. V. V., Hilbers, F. & Poulsen, H. The structure and function of the Na,K-ATPase isoforms in health and disease. Front. Physiol. 8, 371 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  31. Geering, K. Functional roles of Na,K-ATPase subunits. Curr. Opin. Nephrol. Hypertens. 17, 526–532 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Morth, J. P. et al. Crystal structure of the sodium-potassium pump. Nature 450, 1043–1049 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Poulsen, L. R. et al. The Arabidopsis P4-ATPase ALA3 localizes to the Golgi and requires a β-subunit to function in lipid translocation and secretory vesicle formation. Plant Cell 20, 658–676 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Saito, K. et al. Cdc50p, a protein required for polarized growth, associates with the Drs2p P-Type ATPase implicated in phospholipid translocation in Saccharomyces cerevisiae. Mol. Biol. Cell 15, 3418–3432 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Wicky, S., Schwarz, H. & Singer-Krüger, B. Molecular interactions of yeast Neo1p, an essential member of the Drs2 family of aminophospholipid translocases, and its role in membrane trafficking within the endomembrane system. Mol. Cell Biol. 24, 7402–7418 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Takatsu, H. et al. ATP9B, a P4-ATPase (a putative aminophospholipid translocase), localizes to the trans-Golgi network in a CDC50 protein-independent manner. J. Biol. Chem. 286, 38159–38167 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Ansari, I. H. et al. Characterization of P4 ATPase phospholipid translocases (flippases) in human and rat pancreatic Beta cells. J. Biol. Chem. 290, 23110–23123 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Poulsen, L. R., López-Marqués, R. L. & Palmgren, M. G. Flippases: still more questions than answers. Cell Mol. Life Sci. 65, 3119–3125 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Puts, C. F. & Holthuis, J. C. M. Mechanism and significance of P-4 ATPase-catalyzed lipid transport: lessons from a Na+/K+-pump. Biochim. Biophys. Acta 1791, 603–611 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. López-Marqués, R. L. et al. Intracellular targeting signals and lipid specificity determinants of the ALA/ALIS P4-ATPase complex reside in the catalytic ALA α-subunit. Mol. Biol. Cell 21, 791–801 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  41. Bryde, S. et al. CDC50 proteins are critical components of the human class-1 P4-ATPase transport machinery. J. Biol. Chem. 285, 40562–40572 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. van der Velden, L. M. et al. Heteromeric interactions required for abundance and subcellular localization of human CDC50 proteins and class 1 P4-ATPases. J. Biol. Chem. 285, 40088–40096 (2010).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Coleman, J. A. & Molday, R. S. Critical role of the β-subunit CDC50A in the stable expression, assembly, subcellular localization, and lipid transport activity of the P4-ATPase ATP8A2. J. Biol. Chem. 286, 17205–17216 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Lenoir, G., Williamson, P., Puts, C. F. & Holthuis, J. C. M. Cdc50p plays a vital role in the ATPase reaction cycle of the putative aminophospholipid transporter Drs2p. J. Biol. Chem. 284, 17956–17967 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Tone, T., Nakayama, K., Takatsu, H. & Shin, H. W. ATPase reaction cycle of P4‐ATPases affects their transport from the endoplasmic reticulum. FEBS Lett. 594, 412–423 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Bai, L. et al. Transport mechanism of P4 ATPase phosphatidylcholine flippases. eLife 9, e62163 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Nakanishi, H. et al. Crystal structure of a human plasma membrane phospholipid flippase. J. Biol. Chem. 295, 10180–10194 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Nakanishi, H. et al. Transport cycle of plasma membrane flippase ATP11C by cryo-EM. Cell Rep. 32, 108208 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Timcenko, M. et al. Structure and autoregulation of a P4-ATPase lipid flippase. Nature 571, 366–370 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Hiraizumi, M., Yamashita, K., Nishizawa, T. & Nureki, O. Cryo-EM structures capture the transport cycle of the P4-ATPase flippase. Science 365, 1149–1155 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. He, Y., Xu, J., Wu, X. & Li, L. Structures of a P4-ATPase lipid flippase in lipid bilayers. Protein Cell 11, 458–463 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Botella, C. et al. ALA10, a phospholipid flippase, controls FAD2/FAD3 desaturation of phosphatidylcholine in the ER, and affects chloroplast lipid composition in Arabidopsis thaliana. Plant Physiol. 170, 1300–1314 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Poulsen, L. R. et al. A phospholipid uptake system in the model plant Arabidopsis thaliana. Nat. Commun. 6, 7649 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Davis, J. A. et al. The lipid flippases ALA4 and ALA5 play critical roles in cell expansion and plant growth. Plant Physiol. 182, 2111–2125 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Hua, Z. L. & Graham, T. R. Requirement for Neo1p in retrograde transport from the Golgi complex to the endoplasmic reticulum. Mol. Biol. Cell 14, 4971–4983 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Takar, M., Wu, Y. & Graham, T. R. The essential Neo1 protein from budding yeast plays a role in establishing aminophospholipid asymmetry of the plasma membrane. J. Biol. Chem. 291, 15727–15739 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Wu, Y., Takar, M., Cuentas-Condori, A. A. & Graham, T. R. Neo1 and phosphatidylethanolamine contribute to vacuole membrane fusion in Saccharomyces cerevisiae. Cell Logist. 6, e1228791 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  58. Tanaka, Y. et al. The phospholipid flippase ATP9A is required for the recycling pathway from the endosomes to the plasma membrane. Mol. Biol. Cell 27, 3883–3893 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Okamoto, S. et al. The N-or C-terminal cytoplasmic regions of P4-ATPases determine their cellular localization. Mol. Biol. Cell 31, 2115–2124 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Guo, Z. et al. Lipid flippases promote antiviral silencing and the biogenesis of viral and host siRNAs in Arabidopsis. Proc. Natl Acad. Sci. USA 114, 1377–1382 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Zhu, B. et al. Arabidopsis ALA1 and ALA2 mediate RNAi-based antiviral immunity. Front. Plant Sci. 8, 1–9 (2017).

    Article  Google Scholar 

  62. Kato, U. et al. A novel membrane protein, Ros3p, is required for phospholipid translocation across the plasma membrane in Saccharomyces cerevisiae. J. Biol. Chem. 277, 37855–37862 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Iwamoto, K. et al. Local exposure of phosphatidylethanolamine on the yeast plasma membrane is implicated in cell polarity. Genes Cells 9, 891–903 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Furuta, N., Fujimura-Kamada, K., Saito, K., Yamamoto, T. & Tanaka, K. Endocytic recycling in yeast is regulated by putative phospholipid translocases and the Ypt31p/32p–Rcy1p pathway. Mol. Biol. Cell 18, 295–312 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Frøsig, M. M. et al. Pseudohyphal growth in Saccharomyces cerevisiae involves protein kinase-regulated lipid flippases. J. Cell Sci. 133, jcs235994 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Paulusma, C. C. et al. ATP8B1 requires an accessory protein for endoplasmic reticulum exit and plasma membrane lipid flippase activity. Hepatology 47, 268–278 (2007).

    Article  CAS  Google Scholar 

  67. Takatsu, H. et al. Phospholipid flippase activities and substrate specificities of human type IV P-type ATPases localized to the plasma membrane. J. Biol. Chem. 289, 33543–33556 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Naito, T. et al. Phospholipid flippase ATP10A translocates phosphatidylcholine and is involved in plasma nembrane dynamics. J. Biol. Chem. 290, 15004–15017 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. López-Marqués, R. L., Poulsen, L. R. & Palmgren, M. G. A putative plant aminophospholipid flippase, the Arabidopsis P4 ATPase ALA1, localizes to the plasma membrane following association with a β-subunit. PLoS ONE 7, e33042 (2012).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Salvaing, J. et al. PUB11-dependent ubiquitination of the phospholipid flippase ALA10 modifies ALA10 localization and affects the pool of linolenic phosphatidylcholine. Front. Plant Sci. 11, 1070 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  71. Botella, C., Jouhet, J. & Block, M. A. Importance of phosphatidylcholine on the chloroplast surface. Prog. Lipid Res. 65, 12–23 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Labrant, E., Barnes, A. C. & Roston, R. Lipid transport required to make lipids of photosynthetic membranes. Photosynth. Res. 138, 345–360 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Yin, C., Andersson, M. X., Zhang, H. & Aronsson, H. Phosphatidylcholine is transferred from chemically-defined liposomes to chloroplasts through proteins of the chloroplast outer envelope membrane. FEBS Lett. 589, 177–181 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Andersson, M. X., Kjellberg, J. M. & Sandelius, A. S. The involvement of cytosolic lipases in converting phosphatidyl choline to substrate for galactolipid synthesis in the chloroplast envelope. Biochim. Biophys. Acta 1684, 46–53 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Costa, S. R. et al. Role of post-translational modifications at the β-subunit ectodomain in complex association with a promiscuous plant P4-ATPase. Biochem. J. 473, 1605–1615 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Barbosa, S., Pratte, D., Schwarz, H., Pipkorn, R. & Singer-Kruger, B. Oligomeric Dop1p is part of the endosomal Neo1p–Ysl2p–Arl1p membrane remodeling complex. Traffic 11, 1092–1106 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Chantalat, S. et al. The Arf activator Gea2p and the P-type ATPase Drs2p interact at the Golgi in Saccharomyces cerevisiae. J. Cell Sci. 117, 711–722 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Natarajan, P. et al. Regulation of a Golgi flippase by phosphoinositides and an ArfGEF. Nat. Cell Biol. 11, 1421–1426 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Tsai, P.-C., Hsu, J.-W., Liu, Y.-W., Chen, K.-Y. & Lee, F.-J. S. F. Arl1p regulates spatial membrane organization at the trans-Golgi network through interaction with Arf-GEF Gea2p and flippase Drs2p. Proc. Natl Acad. Sci. USA 110, E668–E677 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Zhang, X. et al. Arabidopsis flippases cooperate with Arf GTPase exchange factors to regulate the trafficking and polarity of PIN auxin transporters. Plant Cell 32, 1644–1664 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Papadopulos, A. et al. Flippase activity detected with unlabeled lipids by shape changes of giant unilamellar vesicles. J. Biol. Chem. 282, 15559–15568 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Nakano, K., Yamamoto, T., Kishimoto, T., Noji, T. & Tanaka, K. Protein kinases Fpk1p and Fpk2p are novel regulators of phospholipid asymmetry. Mol. Biol. Cell 19, 1783–1797 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Benschop, J. J. et al. Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol. Cell Proteom. 6, 1198–1214 (2007).

    Article  CAS  Google Scholar 

  84. Umezawa, T. et al. Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana. Sci. Signal. 6, rs8 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Nühse, T. S., Stensballe, A., Jensen, O. N. & Peck, S. C. Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database W inside box sign. Plant Cell 16, 2394–2405 (2004).

    Article  PubMed Central  PubMed  Google Scholar 

  86. Nühse, T. S., Bottrill, A. R., Jones, A. M. E. & Peck, S. C. Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J. 51, 931–940 (2007).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Jones, A. M. E. et al. Phosphoproteomic analysis of nuclei-enriched fractions from Arabidopsis thaliana. J. Proteom. 72, 439–451 (2009).

    Article  CAS  Google Scholar 

  88. Reiland, S. et al. Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol. 150, 889–903 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Whiteman, S. A. et al. Identification of novel proteins and phosphorylation sites in a tonoplast enriched membrane fraction of Arabidopsis thaliana. Proteomics 8, 3536–3547 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Nakagami, H. et al. Large-scale comparative phosphoproteomics identifies conserved phosphorylation sites in plants. Plant Physiol. 153, 1161–1174 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Choudhary, M. K., Nomura, Y., Wang, L., Nakagami, H. & Somers, D. E. Quantitative circadian phosphoproteomic analysis of Arabidopsis reveals extensive clock control of key components in physiological, metabolic, and signaling pathways. Mol. Cell Proteom. 14, 2243–2260 (2015).

    Article  CAS  Google Scholar 

  92. Chen, Y., Hoehenwarter, W. & Weckwerth, W. Comparative analysis of phytohormone-responsive phosphoproteins in Arabidopsis thaliana using TiO2-phosphopeptide enrichment and mass accuracy precursor alignment. Plant J. 63, 1–17 (2010).

    CAS  PubMed  Google Scholar 

  93. Al-Momani, S., Qi, D., Ren, Z. & Jones, A. R. Comparative qualitative phosphoproteomics analysis identifies shared phosphorylation motifs and associated biological processes in evolutionary divergent plants. J. Proteom. 181, 152–159 (2018).

    Article  CAS  Google Scholar 

  94. Wang, X. et al. A large-scale protein phosphorylation analysis reveals novel phosphorylation motifs and phosphoregulatory networks in Arabidopsis. J. Proteom. 78, 486–498 (2013).

    Article  CAS  Google Scholar 

  95. Wang, J. et al. Proteomic analysis and functional characterization of P4-ATPase phospholipid flippases from murine tissues. Sci. Rep. 8, 10795 (2018).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Roitinger, E. et al. Quantitative phosphoproteomics of the ataxia telangiectasia-mutated (ATM) and ataxia telangiectasia-mutated and Rad3-related (ATR) dependent DNA damage response in Arabidopsis thaliana. Mol. Cell Proteom. 14, 556–571 (2015).

    Article  CAS  Google Scholar 

  97. van Wijk, K. J., Friso, G., Walther, D. & Schulze, W. X. Meta-analysis of Arabidopsis thaliana phospho-proteomics data reveals compartmentalization of phosphorylation motifs. Plant Cell 26, 2367–2389 (2014).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Lassowskat, I., Böttcher, C., Eschen-Lippold, L., Scheel, D. & Lee, J. Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana. Front. Plant Sci. 5, 554 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  99. Cho, H. Y., Wen, T. N., Wang, Y. T. & Shih, M. C. Quantitative phosphoproteomics of protein kinase SnRK1 regulated protein phosphorylation in Arabidopsis under submergence. J. Exp. Bot. 67, 2745–2760 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Mattei, B., Spinelli, F., Pontiggia, D. & De Lorenzo, G. Comprehensive analysis of the membrane phosphoproteome regulated by oligogalacturonides in Arabidopsis thaliana. Front. Plant Sci. 7, 1107 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  101. Chen, Y. & Hoehenwarter, W. Rapid and reproducible phosphopeptide enrichment by tandem metal oxide affinity chromatography: application to boron deficiency induced phosphoproteomics. Plant J. 98, 370–384 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Song, G., Brachova, L., Nikolau, B. J., Jones, A. M. & Walley, J. W. Heterotrimeric G-protein-dependent proteome and phosphoproteome in unstimulated Arabidopsis roots. Proteomics 18, e1800323 (2018).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Aihara, Y. et al. Mutations in N-terminal flanking region of blue light-sensing light-oxygen and voltage 2 (LOV2) domain disrupt its repressive activity on kinase domain in the Chlamydomonas phototropin. J. Biol. Chem. 287, 9901–9909 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Suzuki, T., Mioka, T., Tanaka, K. & Nagatani, A. An optogenetic system to control membrane phospholipid asymmetry through flippase activation in budding yeast. Sci. Rep. 10, 12474 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Jing, W. et al. Calpain cleaves phospholipid flippase ATP8A1 during apoptosis in platelets. Blood Adv. 3, 219–229 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Segawa, K. et al. Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure. Science 344, 1164–1168 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Bellati, J. et al. Novel aquaporin regulatory mechanisms revealed by interactomics. Mol. Cell Proteom. 15, 3473–3487 (2016).

    Article  CAS  Google Scholar 

  108. van Veen, S. et al. ATP13A2 deficiency disrupts lysosomal polyamine export. Nature 578, 419–424 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Sørensen, D. M. et al. Ca2+ induces spontaneous dephosphorylation of a novel P5A-type ATPase. J. Biol. Chem. 287, 28336–28348 (2012).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Corradi, G. R. et al. Reduction of the P5A-ATPase Spf1p phosphoenzyme by a Ca2+-dependent phosphatase. PLoS ONE 15, e0232476 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Lyons, J. A., Timcenko, M., Dieudonné, T., Lenoir, G. & Nissen, P. P4-ATPases: how an old dog learnt new tricks—structure and mechanism of lipid flippases. Curr. Opin. Struct. Biol. 63, 65–73 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. López-Marqués, R. L., Gourdon, P., Günther Pomorski, T. & Palmgren, M. The transport mechanism of P4 ATPase lipid flippases. Biochem. J. 477, 3769–3790 (2020).

    Article  PubMed  Google Scholar 

  113. Palmgren, M., Østerberg, J. T., Nintemann, S. J., Poulsen, L. R. & López-Marqués, R. L. Evolution and a revised nomenclature of P4 ATPases, a eukaryotic family of lipid flippases. Biochim. Biophys. Acta 1861, 1135–1151 (2019).

    Article  CAS  Google Scholar 

  114. Gomes, E. et al. Chilling tolerance in Arabidopsis involves ALA1, a member of a new family of putative aminophospholipid translocases. Plant Cell 12, 2441–2453 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Jensen, M. S. et al. Phospholipid flipping involves a central cavity in P4 ATPases. Sci. Rep. 7, 17621 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Davis, J. A., Pares, R. B., Palmgren, M., López-Marqués, R. L. & Harper, J. F. A. A potential pathway for flippase-facilitated glucosylceramide catabolism in plants. Plant Signal. Behav. 15, 1783486 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. McDowell, S. C., López-Marqués, R. L., Poulsen, L. R., Palmgren, M. G. & Harper, J. F. Loss of the Arabidopsis thaliana P4-ATPase ALA3 reduces adaptability to temperature stresses and impairs vegetative, pollen, and ovule development. PLoS ONE 8, e62577 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Zhang, X. G. & Oppenheimer, D. G. Irregular Trichome Branch 2 (ITB2) encodes a putative aminophospholipid translocase that regulates trichome branch elongation in Arabidopsis. Plant J. 60, 195–206 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Onelli, E. & Moscatelli, A. Endocytic pathways and recycling in growing pollen tubes. Plants 2, 211–229 (2013).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  120. Hepler, P. K. & Winship, L. J. The pollen tube clear zone: Clues to the mechanism of polarized growth. J. Integr. Plant Biol. 57, 79–92 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Zhou, Y. et al. The tip-localized phosphatidylserine established by Arabidopsis ALA3 is crucial for Rab GTPase-mediated vesicle trafficking and pollen tube growth. Plant Cell 32, 3170–3187 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  122. Platre, M. P. et al. Developmental control of plant Rho GTPase nano-organization by the lipid phosphatidylserine. Science 364, 57–62 (2019).

    Article  CAS  PubMed  Google Scholar 

  123. Underwood, W., Ryan, A. & Somerville, S. C. An Arabidopsis lipid flippase is required for timely recruitment of defenses to the host–pathogen interface at the plant cell surface. Mol. Plant 10, 805–820 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. McDowell, S. C. et al. Loss of the Arabidopsis thaliana P4-ATPases ALA6 and ALA7 impairs pollen fitness and alters the pollen tube plasma membrane. Front. Plant Sci. 6, 197 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  125. Sanz-Fernández, M. et al. Screening Arabidopsis mutants in genes useful for phytoremediation. J. Hazard. Mater. 335, 143–151 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Michaelson, L. V., Napier, J. A., Molino, D. & Faure, J. D. Plant sphingolipids: their importance in cellular organization and adaption. Biochim. Biophys. Acta 1861, 1329–1335 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  127. Boutté, Y. & Jaillais, Y. Metabolic cellular communications: feedback mechanisms between membrane lipid homeostasis and plant development. Dev. Cell 54, 171–182 (2020).

    Article  CAS  PubMed  Google Scholar 

  128. Niu, Y. et al. ALA6, a P4-type ATPase, is involved in heat stress responses in Arabidopsis thaliana. Front. Plant Sci. 8, 1732 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  129. Deng, L. et al. Characterization and fine-mapping of a novel premature leaf senescence mutant yellow leaf and dwarf 1 in rice. Plant Physiol. Biochem. 111, 50–58 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Verhulst, P. M. et al. A flippase-independent function of ATP8B1, the protein affected in familial intrahepatic cholestasis type 1, is required for apical protein expression and microvillus formation in polarized epithelial cells. Hepatology 51, 2049–2060 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Folmer, D. E., van der Mark, V. A., Ho-Mok, K. S., Oude Elferink, R. P. J. & Paulusma, C. C. Differential effects of progressive familial intrahepatic cholestasis type 1 and benign recurrent intrahepatic cholestasis type 1 mutations on canalicular localization of ATP8B1. Hepatology 50, 1597–1605 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. van der Mark, V. A. et al. The lipid flippase heterodimer ATP8B1–CDC50A is essential for surface expression of the apical sodium-dependent bile acid transporter (SLC10A2/ASBT) in intestinal Caco-2 cells. Biochim. Biophys. Acta 1842, 2378–2386 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Ray, N. B. et al. Dynamic regulation of cardiolipin by the lipid pump Atp8b1 determines the severity of lung injury in experimental pneumonia. Nat. Med. 16, 1120–1127 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  134. Engelsberger, W. R. & Schulze, W. X. Nitrate and ammonium lead to distinct global dynamic phosphorylation patterns when resupplied to nitrogen-starved Arabidopsis seedlings. Plant J. 69, 978–995 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  135. Zhang, H. et al. Quantitative phosphoproteomics after auxin-stimulated lateral root fnduction identifies an SNX1 protein phosphorylation site required for growth. Mol. Cell Proteom. 12, 1158–1169 (2013).

    Article  CAS  Google Scholar 

  136. Kohorn, B. D., Hoon, D., Minkoff, B. B., Sussman, M. R. & Kohorn, S. L. Rapid oligo-galacturonide induced changes in protein phosphorylation in Arabidopsis. Mol. Cell Proteom. 15, 1351–1359 (2016).

    Article  CAS  Google Scholar 

  137. Wang, K. et al. Quantitative and functional posttranslational modification proteomics reveals that TREPH1 plays a role in plant touch-delayed bolting. Proc. Natl Acad. Sci. USA 115, E10265–E10274 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. Sugiyama, N. et al. Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis. Mol. Syst. Biol. 4, 193 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  139. Manzano, C., Abraham, Z., López-Torrejón, G. & Del Pozo, J. C. Identification of ubiquitinated proteins in Arabidopsis. Plant Mol. Biol. 68, 145–158 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Klepikova, A. V., Kasianov, A. S., Gerasimov, E. S., Logacheva, M. D. & Penin, A. A. A high resolution map of the Arabidopsis thaliana developmental transcriptome based on RNA-seq profiling. Plant J. 88, 1058–1070 (2016).

    Article  CAS  PubMed  Google Scholar 

  141. Oughtred, R. et al. The BioGRID interaction database: 2019 update. Nucleic Acids Res. 47, D529–D541 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. Hruz, T. et al. RefGenes: Identification of reliable and condition specific reference genes for RT–qPCR data normalization. BMC Genomics 12, 156 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  143. Hruz, T. et al. Genevestigator V3: A reference expression database for the meta-analysis of transcriptomes. Adv. Bioinforma. 2008, 420747 (2008).

    Article  Google Scholar 

  144. Obayashi, T., Aoki, Y., Tadaka, S., Kagaya, Y. & Kinoshita, K. ATTED-II in 2018: A plant coexpression database based on investigation of the statistical property of the mutual rank index. Plant Cell Physiol. 59, e3 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the author’s group is supported by the Novo Nordisk Foundation (NovoCrops; Project Number NNF19OC0056580).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa L. López-Marqués.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Peer review information Nature Plants thanks Juliette Jouhet and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Marqués, R.L. Lipid flippases as key players in plant adaptation to their environment. Nat. Plants 7, 1188–1199 (2021). https://doi.org/10.1038/s41477-021-00993-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-021-00993-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing