Skip to main content

Advertisement

Log in

Synthesis of biochemically reduced graphene-oxide/Fe0 containing polyaniline ternary hybrid composite through interfacial polymerization for supercapacitors

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A novel electrode material for supercapacitor has been developed based on biochemically reduced graphene oxide/zerovalent iron (rGO/Fe0) and polyaniline (PANI) ternary hybrid composite synthesized by interfacial polymerization. The composites were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), ultraviolet–visible absorption (UV–Vis), X-ray diffraction (XRD), X-ray photoelectron spectrum (XPS) and electrical conductivity measurements. The composites exhibited noticeable improvement in electrical conductivity and excellent electrochemical reversibility when compared to bare polymer. The electrochemical properties of the composite electrode are investigated by galvanostatic charge–discharge, electrochemical impedance spectroscopy (EIS) studies. The enhanced specific capacitance with higher conductivities is observed in PANI/rGO/Fe0 (342 F g−1) when compared with PANI (182 F g−1) and PANI/rGO composites (294 F g−1) with a constant current density of 1.0 A g−1. The cyclic stability of the composite, following 500 cycles of operations, was at 68.6 (PANI), 80.6 (PANI/rGO) and 95.4% (PANI/rGO/Fe0) of their initial capacitance. The higher conductivity, higher specific capacitance and cyclic self-stability of PANI/rGO/Fe0 ternary composite can provide new prospects in the field energy storage application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Wang H, Hao Q, Yang X, Lu L and Wang X 2010 ACS Appl. Mater. Interfaces 2 821

    Article  CAS  Google Scholar 

  2. Pandolfo A G and Hollenkamp A F 2006 J. Power Sources 157 11

    Article  CAS  Google Scholar 

  3. Heydari H and Gholivand M B 2016 J. Mater. Sci.: Mater. Electron. 28 3607

    Google Scholar 

  4. Kaya A, Alialy S, Demirezen S, Balbas M, Kin S Y and Aytimur A 2016 Ceram. Int. 42 3322

    Article  CAS  Google Scholar 

  5. Parlaktu F, Altındal S, Tatarog A, Parlak M and Agasiev A 2008 Microelectron. Eng. 85 81

    Article  CAS  Google Scholar 

  6. Yu Z, Tetard L, Zhai L and Thomas J 2015 Energy Environ. Sci. 8 702

    Article  CAS  Google Scholar 

  7. Yu D and Liming D L 2010 J. Phys. Chem. Lett. 1 467

    Article  CAS  Google Scholar 

  8. Zhou X, Huang X, Qi X, Wu S, Xue C, Boey F Y et al 2009 J. Phys. Chem. C 113 10842

    Article  CAS  Google Scholar 

  9. Liu K, Chen L, Chen Y, Wu J, Zhang W, Chen F et al 2011 J. Mater. Chem. 21 8612

    Article  CAS  Google Scholar 

  10. Li X, Zhang H, Wanga G and Jiang Z 2020 J. Mater. Chem. 10 10598

    Google Scholar 

  11. Gu Z, Zhang L and Li C 2009 J. Macromol. Sci. Part B: Phys. 48 1093

    Article  CAS  Google Scholar 

  12. Gu Z, Li C, Wang G, Zhang L, Li X, Wang W et al 2010 J. Polym. Sci. Part B: Polym. Phys. 48 1329

    Article  CAS  Google Scholar 

  13. Bora C, Sarkar C, Mohan K J and Dolui S K 2015 Electrochim. Acta 157 225

    Article  CAS  Google Scholar 

  14. Pethe S M and Kondawar S B 2014 Adv. Mater. Lett. 5 728

    Article  Google Scholar 

  15. Gui D, Liu C, Chen F and Liu J 2014 Appl. Surf. Sci. 307 172

    Article  CAS  Google Scholar 

  16. Ren L M, Dong J, Chi Z and Huang H 2018 J. Environ. Sci. 73 96

    Article  Google Scholar 

  17. Hwang J H, Pathak P, Wang X, Rodriguez K L, Park J J, Chob H J et al 2019 Sens. Actuators B Chem. 294 89

    Article  CAS  Google Scholar 

  18. Yanilmaz M, Dirican M, Asiric A M and Zhang X 2019 J. Energy Storage 24 100766

    Article  Google Scholar 

  19. Yesuraj J, Padmaraj O and Suthanthiraraj S A 2020 J. Inorg. Organomet. Polym. Mater. 30 310

    Article  CAS  Google Scholar 

  20. Suneetha R B, Selvi P and Vedhi C 2019 Vacuum 164 396

    Article  CAS  Google Scholar 

  21. Zhou J, Zhang C, Niu T, Huang R, Li S, Zhang J Z et al 2018 ACS Appl. Energy Mater. 1 4599

    Article  CAS  Google Scholar 

  22. Bora C and Dolui S K 2012 Polymer 53 923

    Article  CAS  Google Scholar 

  23. Bora C and Dolui S K 2014 J. Phys. Chem. C 118 29688

    Article  CAS  Google Scholar 

  24. Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I et al 2007 Nat. Mater. 6 652

    Article  CAS  Google Scholar 

  25. Wu J, Pisula W and Mullen K 2007 Chem. Rev. 107 718

    Article  CAS  Google Scholar 

  26. Bunch J S, van der Zande A M, Verbridge S S, Frank I W, Tanenbaum D M, Parpia J M et al 2007 Science 315 490

    Article  CAS  Google Scholar 

  27. Liu N, Luo F, Wu H, Liu Y, Zhang C and Chen J 2008 Adv. Func. Mater. 18 1518

    Article  CAS  Google Scholar 

  28. Konwer S, Begum A, Bordoloi S and Borua R 2017 J. Polym. Res. 24 371

    Article  CAS  Google Scholar 

  29. Konwer S, Boruah R and Dolui S K 2011 J. Electron. Mater. 40 2248

    Article  CAS  Google Scholar 

  30. Liu P G, Gong K C, Xiao P and Xiao M 2000 J. Mater. Chem. 10 933

    Article  CAS  Google Scholar 

  31. Konwer S 2016 J. Mater. Sci.: Mater. Electron. 27 4139

    CAS  Google Scholar 

  32. Rose A, Prasad K G, Sakthivel T, Gunasekaran V, Maiyalagan T and Vijayakumar T 2018 Appl. Surf. Sci. 449 551

    Article  CAS  Google Scholar 

  33. Sultana S, Bordoloi S, Konwer S, Borah G and Gogoi P K 2020 Appl. Organomet. Chem. 34 e5582

    Article  CAS  Google Scholar 

  34. Chetia M, Konwar M, Pegu B, Konwer S and Sarma D 2021 J. Mol. Struct. 1233 130019

    Article  CAS  Google Scholar 

  35. Xu Y, Schwab M G, Strudwick A J, Hennig I, Feng X, Wu Z et al 2013 Adv. Energy Mater. 3 1035

    Article  CAS  Google Scholar 

  36. Zhang T, Yue H, Gao X, Yao F, Chen H, Lu X et al 2020 Dalton Trans. 49 3304

    Article  CAS  Google Scholar 

  37. Ahmad A, Qureshi A S, Li L, Bao J, Xia X, Xu Y et al 2016 Colloids Surf. B: Biointerfaces 143 490

    Article  CAS  Google Scholar 

  38. Hlekelele L, Nomadolo N E, Setshedi K Z, Mofokeng L E, Chetty A and Chauke V P 2019 RSC Adv. 9 14531

    Article  CAS  Google Scholar 

  39. Liu A, Li C, Bai H and Shi G 2010 J. Phys. Chem. C 114 22783

    Article  CAS  Google Scholar 

  40. Wang S, Gao B, Li Y, Elise A C and He F 2017 J. Hazard. Mater. 322 172

    Article  CAS  Google Scholar 

  41. Heydari H and Gholivand M B 2017 J. Mater. Sci.: Mater. Electron. 28 3607

    CAS  Google Scholar 

  42. Arjomandi J, Lee J Y, Ahmadi F, Parvin M H and Moghanni-Bavil-Olyaei H 2017 Electrochim. Acta 252 212

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SB and SK both acknowledge Science and Engineering Research Board (SERB), India, for providing research Grant (Nos. SR/WOS-A/CS-161/2016, SERB/F/6115/2013-14) and (No. SB/FT/CS-025/2013), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Konwer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pegu, B., Bordoloi, S., Boruah, R. et al. Synthesis of biochemically reduced graphene-oxide/Fe0 containing polyaniline ternary hybrid composite through interfacial polymerization for supercapacitors. Bull Mater Sci 44, 252 (2021). https://doi.org/10.1007/s12034-021-02540-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02540-0

Keywords

Navigation