Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Translational Therapeutics

Mapping of truncated O-glycans in cancers of epithelial and non-epithelial origin

Abstract

Background

Novel immunotherapies targeting cancer-associated truncated O-glycans Tn (GalNAcα-Ser/Thr) and STn (Neu5Acα2–6GalNacα-Ser/Thr) are promising strategies for cancer treatment. However, no comprehensive, antibody-based mapping of truncated O-glycans in tumours exist to guide drug development.

Methods

We used monoclonal antibodies to map the expression of truncated O-glycans in >700 tissue cores representing healthy and tumour tissues originating from breast, colon, lung, pancreas, skin, CNS and mesenchymal tissue. Patient-derived xenografts were used to evaluate Tn expression upon tumour engraftment.

Results

The Tn-antigen was highly expressed in breast (57%, n = 64), colorectal (51%, n = 140) and pancreatic (53%, n = 108) tumours, while STn was mainly observed in colorectal (80%, n = 140) and pancreatic (56%, n = 108) tumours. We observed no truncated O-glycans in mesenchymal tumours (n = 32) and low expression of Tn (5%, n = 87) and STn (1%, n = 75) in CNS tumours. No Tn-antigen was found in normal tissue (n = 124) while STn was occasionally observed in healthy gastrointestinal tissue. Surface expression of Tn-antigen was identified across several cancers. Tn and STn expression decreased with tumour grade, but not with cancer stage. Numerous xenografts maintained Tn expression.

Conclusions

Surface expression of truncated O-glycans is limited to cancers of epithelial origin, making Tn and STn attractive immunological targets in the treatment of human carcinomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: O-glycan biosynthesis and structure.
Fig. 2: Truncated O-glycans are surface exposed in tumours of epithelial origin.
Fig. 3: Truncated O-glycans are rarely surface exposed in healthy tissue.
Fig. 4: Statistical analysis of expression of truncated O-glycans.
Fig. 5: Tn is conserved on the cell surface after xenografting of tumour cells.

Similar content being viewed by others

Data availability

All data included in the study are available upon request to the corresponding author.

References

  1. Martinez M, Moon EK. CAR T cells for solid tumors: new strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front Immunol. 2019;10:128.

  2. Brudno JN, Kochenderfer JN. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood. 2016;127:3321–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yarchoan M, Johnson BA, Lutz ER, Laheru DA, Jaffee EM. Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer. 2017;17:209–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Steentoft C, Migliorini D, King TR, Mandel U, June CH, Posey AD. Glycan-directed CAR-T cells. Glycobiology. 2018;28:656–69. 01

    Article  CAS  PubMed  Google Scholar 

  5. Scott E, Elliott DJ, Munkley J. Tumour associated glycans: a route to boost immunotherapy? Clin Chim Acta Int J Clin Chem. 2020;502:167–73.

    Article  CAS  Google Scholar 

  6. Stowell SR, Ju T, Cummings RD. Protein glycosylation in cancer. Annu Rev Pathol. 2015;10:473–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Moremen KW, Tiemeyer M, Nairn AV. Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol. 2012;13:448–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kudelka MR, Ju T, Heimburg-Molinaro J, Cummings RD. Simple sugars to complex disease-mucin-type O-glycans in cancer. Adv Cancer Res. 2015;126:53–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ludwig JA, Weinstein JN. Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer. 2005 ;5:845–56.

    Article  CAS  PubMed  Google Scholar 

  10. Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. editors. Essentials of glycobiology. 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2015. p. 99–125.

  11. Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB, Schjoldager KT, et al. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J. 2013;32:1478–88.

  12. King SL, Joshi HJ, Schjoldager KT, Halim A, Madsen TD, Dziegiel MH, et al. Characterizing the O-glycosylation landscape of human plasma, platelets, and endothelial cells. Blood Adv. 2017;1:429–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Springer GF. T and Tn, general carcinoma autoantigens. Science 1984;224:1198–206.

    Article  CAS  PubMed  Google Scholar 

  14. Chia J, Goh G, Bard F. Short O-GalNAc glycans: regulation and role in tumor development and clinical perspectives. Biochim Biophys Acta. 2016;1860:1623–39.

    Article  CAS  PubMed  Google Scholar 

  15. Brockhausen I, Stanley P. O-GalNAc glycans. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al., editors. Essentials of Glycobiology. 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2015. p.113–125.

  16. Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer. 2015;15:540–55.

    Article  CAS  PubMed  Google Scholar 

  17. Cervoni GE, Cheng JJ, Stackhouse KA, Heimburg-Molinaro J, Cummings RD. O-glycan recognition and function in mice and human cancers. Biochem J. 2020;477:1541–64.

    Article  CAS  PubMed  Google Scholar 

  18. Prokop O, Uhlenbruck G. N-acetyl-D-galactosamine in tumor cell membranes: demonstration by means of Helix agglutinins. Med Welt. 1969;46:2515–9.

    CAS  PubMed  Google Scholar 

  19. Julien S, Videira PA, Delannoy P. Sialyl-tn in cancer: (how) did we miss the target? Biomolecules. 2012;2:435–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Miles D, Roché H, Martin M, Perren TJ, Cameron DA, Glaspy J, et al. Phase III multicenter clinical trial of the sialyl-TN (STn)-keyhole limpet hemocyanin (KLH) vaccine for metastatic breast cancer. Oncologist. 2011;16:1092–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. MacLean GD, Reddish MA, Koganty RR, Longenecker BM. Antibodies against mucin-associated sialyl-Tn epitopes correlate with survival of metastatic adenocarcinoma patients undergoing active specific immunotherapy with synthetic STn vaccine. J Immunother Emphas Tumor Immunol. 1996;19:59–68.

    Article  CAS  Google Scholar 

  22. Miles DW, Towlson KE, Graham R, Reddish M, Longenecker BM, Taylor-Papadimitriou J, et al. A randomised phase II study of sialyl-Tn and DETOX-B adjuvant with or without cyclophosphamide pretreatment for the active specific immunotherapy of breast cancer. Br J Cancer. 1996;74:1292–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Radhakrishnan P, Dabelsteen S, Madsen FB, Francavilla C, Kopp KL, Steentoft C, et al. Immature truncated O-glycophenotype of cancer directly induces oncogenic features. Proc Natl Acad Sci USA. 2014;111:E4066–4075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ju T, Otto VI, Cummings RD. The Tn antigen-structural simplicity and biological complexity. Angew Chem Int Ed Engl. 2011;50:1770–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ju T, Wang Y, Aryal RP, Lehoux SD, Ding X, Kudelka MR, et al. Tn and sialyl-Tn antigens, aberrant O-glycomics as human disease markers. Proteom Clin Appl. 2013;7:618–31.

    Article  CAS  Google Scholar 

  26. Dabelsteen S, Pallesen EMH, Marinova IN, Nielsen MI, Adamopoulou M, Rømer TB, et al. Essential functions of glycans in human epithelia dissected by a CRISPR-Cas9-engineered human organotypic skin model. Dev Cell. 2020;54:669–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bagdonaite I, Pallesen EM, Ye Z, Vakhrushev SY, Marinova IN, Nielsen MI, et al. O‐glycan initiation directs distinct biological pathways and controls epithelial differentiation. EMBO Rep. 2020; 4;21.

  28. Bergstrom K, Liu X, Zhao Y, Gao N, Wu Q, Song K, et al. Defective intestinal mucin-type O-glycosylation causes spontaneous colitis-associated cancer in mice. Gastroenterology. 2016;151:152–.e11.

    Article  CAS  PubMed  Google Scholar 

  29. Gao N, Bergstrom K, Fu J, Xie B, Chen W, Xia L. Loss of intestinal O-glycans promotes spontaneous duodenal tumors. Am J Physiol Gastrointest Liver Physiol. 2016;311:G74–83.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Madsen CB, Lavrsen K, Steentoft C, Vester-Christensen MB, Clausen H, Wandall HH, et al. Glycan elongation beyond the mucin associated Tn antigen protects tumor cells from immune-mediated killing. PLoS ONE. 2013;8:e72413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun X, Ju T, Cummings RD. Differential expression of Cosmc, T-synthase and mucins in Tn-positive colorectal cancers. BMC Cancer. 2018;16;18.

  32. Itzkowitz SH, Bloom EJ, Lau TS, Kim YS. Mucin associated Tn and sialosyl-Tn antigen expression in colorectal polyps. Gut. 1992;33:518–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Coon JS, Weinstein RS, Summers JL. Blood group precursor T-antigen expression in human urinary bladder carcinoma. Am J Clin Pathol. 1982;77:692–9.

    Article  CAS  PubMed  Google Scholar 

  34. Oshikiri T, Miyamoto M, Morita T, Fujita M, Miyasaka Y, Senmaru N, et al. Tumor-associated antigen recognized by the 22-1-1 monoclonal antibody encourages colorectal cancer progression under the scanty CD8+ T cells. Clin Cancer Res J Am Assoc Cancer Res. 2006;12:411–6.

    Article  CAS  Google Scholar 

  35. Desai PR, Immunoreactive T. and Tn antigens in malignancy: role in carcinoma diagnosis, prognosis, and immunotherapy. Transfus Med Rev. 2000;14:312–25. 1

    Article  CAS  PubMed  Google Scholar 

  36. Brooks SA, Leathem AJ. Prediction of lymph node involvement in breast cancer by detection of altered glycosylation in the primary tumour. Lancet Lond Engl. 1991;338:71–4.

    Article  CAS  Google Scholar 

  37. Remmers N, Anderson JM, Linde EM, DiMaio DJ, Lazenby AJ, Wandall HH, et al. Aberrant expression of mucin core proteins and O-linked glycans associated with progression of pancreatic cancer. Clin Cancer Res. 2013;19:1981–93.

    Article  CAS  PubMed  Google Scholar 

  38. Hofmann BT, Schlüter L, Lange P, Mercanoglu B, Ewald F, Fölster A, et al. COSMC knockdown mediated aberrant O-glycosylation promotes oncogenic properties in pancreatic cancer. Mol Cancer. 2015;29:14.

  39. Itzkowitz SH, Bloom EJ, Kokal WA, Modin G, Hakomori S, Kim YSSialosyl-Tn. A novel mucin antigen associated with prognosis in colorectal cancer patients. Cancer. 1990;66:1960–6.

    Article  CAS  PubMed  Google Scholar 

  40. Werther JL, Tatematsu M, Klein R, Kurihara M, Kumagai K, Llorens P, et al. Sialosyl-Tn antigen as a marker of gastric cancer progression: an international study. Int J Cancer. 1996;69:193–9.

    Article  CAS  PubMed  Google Scholar 

  41. Kobayashi H, Terao T, Kawashima Y. Serum sialyl Tn as an independent predictor of poor prognosis in patients with epithelial ovarian cancer. J Clin Oncol. 1992;10:95–101.

    Article  CAS  PubMed  Google Scholar 

  42. Pedersen JW, Blixt O, Bennett EP, Tarp MA, Dar I, Mandel U, et al. Seromic profiling of colorectal cancer patients with novel glycopeptide microarray. Int J Cancer. 2011;128:1860–71.

    Article  CAS  PubMed  Google Scholar 

  43. Matsumoto Y, Kudelka MR, Hanes MS, Lehoux S, Dutta S, Jones MB, et al. Identification of Tn antigen O-GalNAc-expressing glycoproteins in human carcinomas using novel anti-Tn recombinant antibodies. Glycobiology. 2020;30:282–300.

    CAS  PubMed  Google Scholar 

  44. Mandel U, Petersen OW, Sørensen H, Vedtofte P, Hakomori S, Clausen H, et al. Simple mucin-type carbohydrates in oral stratified squamous and salivary gland epithelia. J Invest Dermatol. 1991;97:713–21.

    Article  CAS  PubMed  Google Scholar 

  45. Thurnher M, Clausen H, Sharon N, Berger EG. Use of O-glycosylation-defective human lymphoid cell lines and flow cytometry to delineate the specificity of Moluccella laevis lectin and monoclonal antibody 5F4 for the Tn antigen (GalNAc alpha 1-O-Ser/Thr). Immunol Lett. 1993;36:239–43.

    Article  CAS  PubMed  Google Scholar 

  46. Böhm CM, Mulder MC, Zennadi R, Notter M, Schmitt-Gräff A, Finn OJ, et al. Carbohydrate recognition on MUC1-expressing targets enhances cytotoxicity of a T cell subpopulation. Scand J Immunol. 1997;46:27–34.

    Article  PubMed  Google Scholar 

  47. Sørensen AL, Reis CA, Tarp MA, Mandel U, Ramachandran K, Sankaranarayanan V, et al. Chemoenzymatically synthesized multimeric Tn/STn MUC1 glycopeptides elicit cancer-specific anti-MUC1 antibody responses and override tolerance. Glycobiology. 2006;16:96–107.

    Article  PubMed  CAS  Google Scholar 

  48. Clausen H, Stroud M, Parker J, Springer G, Hakomori S. Monoclonal antibodies directed to the blood group A associated structure, galactosyl-A: specificity and relation to the Thomsen-Friedenreich antigen. Mol Immunol. 1988;25:199–204.

    Article  CAS  PubMed  Google Scholar 

  49. David L, Nesland JM, Clausen H, Carneiro F, Sobrinho-Simões M. Simple mucin-type carbohydrate antigens (Tn, sialosyl-Tn and T) in gastric mucosa, carcinomas and metastases. APMIS Suppl. 1992;27:162–72.

    CAS  PubMed  Google Scholar 

  50. Manders EM, Stap J, Brakenhoff GJ, van Driel R, Aten JA. Dynamics of three-dimensional replication patterns during the S-phase, analysed by double labelling of DNA and confocal microscopy. J Cell Sci. 1992;103:857–62.

    Article  CAS  PubMed  Google Scholar 

  51. Manders EMM, Verbeek FJ, Aten JA. Measurement of co-localization of objects in dual-colour confocal images. J Microsc. 1993;169:375–82.

    Article  CAS  PubMed  Google Scholar 

  52. Costes SV, Daelemans D, Cho EH, Dobbin Z, Pavlakis G, Lockett S. Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys J. 2004;86:3993–4003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG, Dunne PD, et al. QuPath: open source software for digital pathology image analysis. Sci Rep. 2017;7:16878.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2018. Available from: https://www.R-project.org/.

  55. Lamers CH, Sleijfer S, van Steenbergen S, van Elzakker P, van Krimpen B, Groot C, et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther J Am Soc Gene Ther. 2013;21:904–12.

    Article  CAS  Google Scholar 

  56. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther J Am Soc Gene Ther. 2010;18:843–51.

    Article  CAS  Google Scholar 

  57. Itzkowitz SH, Yuan M, Montgomery CK, Kjeldsen T, Takahashi HK, Bigbee WL, et al. Expression of Tn, sialosyl-Tn, and T antigens in human colon cancer. Cancer Res. 1989;49:197–204.

    CAS  PubMed  Google Scholar 

  58. Ricardo S, Marcos-Silva L, Pereira D, Pinto R, Almeida R, Söderberg O, et al. Detection of glyco-mucin profiles improves specificity of MUC16 and MUC1 biomarkers in ovarian serous tumours. Mol Oncol. 2015;9:503–12.

    Article  CAS  PubMed  Google Scholar 

  59. Schmidt LH, Biesterfeld S, Kümmel A, Faldum A, Sebastian M, Taube C, et al. Tissue microarrays are reliable tools for the clinicopathological characterization of lung cancer tissue. Anticancer Res. 2009;29:201–9.

    PubMed  Google Scholar 

  60. Camp RL, Neumeister V, Rimm DL. A decade of tissue microarrays: progress in the discovery and validation of cancer biomarkers. J Clin Oncol J Am Soc Clin Oncol. 2008;26:5630–7.

    Article  Google Scholar 

  61. Chou C-H, Huang M-J, Chen C-H, Shyu M-K, Huang J, Hung J-S, et al. Up-regulation of C1GALT1 promotes breast cancer cell growth through MUC1-C signaling pathway. Oncotarget. 2015;6:6123–35.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Itzkowitz S, Kjeldsen T, Friera A, Hakomori S, Yang US, Kim YS. Expression of Tn, sialosyl Tn, and T antigens in human pancreas. Gastroenterology. 1991;100:1691–700.

    Article  CAS  PubMed  Google Scholar 

  63. Flores AR, Lemos I, Rema A, Taulescu M, Seixas F, Reis CA, et al. Tn and Sialyl-Tn antigens in canine gastric tissues. Vet Comp Oncol. 2020;18:615–25.

  64. Ogata S, Ho I, Chen A, Dubois D, Maklansky J, Singhal A, et al. Tumor-associated sialylated antigens are constitutively expressed in normal human colonic mucosa. Cancer Res. 1995;55:1869–74.

    CAS  PubMed  Google Scholar 

  65. Cornelissen LAM, Blanas A, Zaal A, van der Horst JC, Kruijssen LJW, O’Toole T, et al. Tn antigen expression contributes to an immune suppressive microenvironment and drives tumor growth in colorectal cancer. Front Oncol. 2020;10:1622.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Mathiesen CBK, Carlsson MC, Brand S, Möller SR, Idorn M, Straten P Thor, et al. Genetically engineered cell factories produce glycoengineered vaccines that target antigen-presenting cells and reduce antigen-specific T-cell reactivity. J Allergy Clin Immunol. 2018;142:1983–7.

    Article  CAS  PubMed  Google Scholar 

  67. Nakasaki H, Mitomi T, Noto T, Ogoshi K, Hanaue H, Tanaka Y, et al. Mosaicism in the expression of tumor-associated carbohydrate antigens in human colonic and gastric cancers. Cancer Res. 1989;49:3662–9.

    CAS  PubMed  Google Scholar 

  68. Ju T, Cummings RD. A unique molecular chaperone Cosmc required for activity of the mammalian core 1 beta 3-galactosyltransferase. Proc Natl Acad Sci USA. 2002;99:16613–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang Y, Ju T, Ding X, Xia B, Wang W, Xia L, et al. Cosmc is an essential chaperone for correct protein O-glycosylation. Proc Natl Acad Sci USA. 2010;107:9228–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sewell R, Bäckström M, Dalziel M, Gschmeissner S, Karlsson H, Noll T, et al. The ST6GalNAc-I sialyltransferase localizes throughout the Golgi and is responsible for the synthesis of the tumor-associated sialyl-Tn O-glycan in human breast cancer. J Biol Chem. 2006;281:3586–94.

    Article  CAS  PubMed  Google Scholar 

  71. Marcos NT, Bennett EP, Gomes J, Magalhaes A, Gomes C, David L, et al. ST6GalNAc-I controls expression of sialyl-Tn antigen in gastrointestinal tissues. Front Biosci Elite Ed. 2011;3:1443–55.

    PubMed  Google Scholar 

  72. Hassinen A, Pujol FM, Kokkonen N, Pieters C, Kihlström M, Korhonen K, et al. Functional organization of Golgi N- and O-glycosylation pathways involves pH-dependent complex formation that is impaired in cancer cells. J Biol Chem. 2011;286:38329–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Axelsson MA, Karlsson NG, Steel DM, Ouwendijk J, Nilsson T, Hansson GC. Neutralization of pH in the Golgi apparatus causes redistribution of glycosyltransferases and changes in the O-glycosylation of mucins. Glycobiology. 2001;11:633–44.

    Article  CAS  PubMed  Google Scholar 

  74. Gill DJ, Tham KM, Chia J, Wang SC, Steentoft C, Clausen H, et al. Initiation of GalNAc-type O-glycosylation in the endoplasmic reticulum promotes cancer cell invasiveness. Proc Natl Acad Sci USA. 2013;110:E3152–3161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nguyen AT, Chia J, Ros M, Hui KM, Saltel F, Bard F. Organelle specific O-glycosylation drives MMP14 activation, tumor growth, and metastasis. Cancer Cell. 2017;32:639–.e6.

    Article  CAS  PubMed  Google Scholar 

  76. Brockhausen I. Mucin-type O-glycans in human colon and breast cancer: glycodynamics and functions. EMBO Rep. 2006;7:599–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lavrsen K, Dabelsteen S, Vakhrushev SY, Levann AMR, Haue AD, Dylander A, et al. De novo expression of human polypeptide N-acetylgalactosaminyltransferase 6 (GalNAc-T6) in colon adenocarcinoma inhibits the differentiation of colonic epithelium. J Biol Chem. 2018;293:1298–314.

    Article  CAS  PubMed  Google Scholar 

  78. Burchell JM, Beatson R, Graham R, Taylor-Papadimitriou J, Tajadura-Ortega V. O-linked mucin-type glycosylation in breast cancer. Biochem Soc Trans. 2018;46:779–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lenos K, Goos JACM, Vuist IM, den Uil SH, Delis-van Diemen PM, Belt EJTh, et al. MGL ligand expression is correlated to BRAF mutation and associated with poor survival of stage III colon cancer patients. Oncotarget. 2015;6:26278–90.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Varki A, Cummings RD, Aebi M, Packer NH, Seeberger PH, Esko JD, et al. Symbol nomenclature for graphical representations of glycans. Glycobiology. 2015;25:1323–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank laboratory technician Karin Uch Hansen for excellent technical assistance. We are also deeply thankful to Professor Jesper Reibel (jrei@sund.ku.dk) for an extraordinary job evaluating the immunohistochemistry of human cancers and healthy tissues.

Funding

This work was supported by the European Commission (GlycoSkin H2020-ERC), The Friis Foundation, The Michelsen Foundation and the Neye Foundation. TBR has received funds from the University of Copenhagen Faculty of Health and Medical Sciences and The Danish Cancer Society. JWP has received funds from The Danish Cancer Society. The founders did not have any role in the acquisition, analysis of or decision to publish the results.

Author information

Authors and Affiliations

Authors

Contributions

TBR, MKMA, SD and HHW conceived and designed the study. TBR drafted the manuscript with MKMA and HHW. Experiments were performed by MKMA, SD, TBR, AG, JS, ET, JWP and ADH, while SD, TBR, JS, MKMA and HHW analysed the data with assistance from ET and AG. Statistical analysis was conducted by TBR and MKMA. All authors read and approved the manuscript.

Corresponding author

Correspondence to Hans Heugh Wandall.

Ethics declarations

Competing interests

HHW owns stocks and is a consultant for and co-founder of EbuMab, ApS. and GO-Therapeutics, Inc. JWP, HHW and MKMA are co-inventors of a novel antibody targeting truncated O-glycans. The remaining authors declare no competing interests. AG, JS and ET are employed by GO-Therapeutics, Inc.

Ethics approval and consent to participate

TMA material was obtained from US Biomax, Inc. The company informs that all human tissues are collected under HIPPA approved protocols, with full information of the donor and with their consent. All standard medical care has been followed, and protection of the donors’ privacy has been ensured.

Consent to publish

TMA material from US Biomax, Inc. is collected with full information of the donor and consent to use tumour material for research purposes, including publication of results.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rømer, T.B., Aasted, M.K.M., Dabelsteen, S. et al. Mapping of truncated O-glycans in cancers of epithelial and non-epithelial origin. Br J Cancer 125, 1239–1250 (2021). https://doi.org/10.1038/s41416-021-01530-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-021-01530-7

This article is cited by

Search

Quick links