Skip to main content
Log in

Evaluating the binary Z-scheme Bi2S3/CuWO4 immobilized on FTO as a visible-light-driven photocatalyst for metronidazole degradation-response surface method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Metronidazole (MTZ) is an antibacterial drug, which is frequently detected in wastewater, resulting in pathogen-resistance and mutagenicity. Therefore, MTZ removal is a serious challenge. In this research work, the visible-light-driven Z-scheme CuWO4/Bi2S3 heterojunction with optimized weight percentage (7%wt) was evaluated for MTZ degradation under LED radiation in batch and continues reactor. The effect of operational factors such as MTZ concentration (10–30 ppm), catalyst dose (0.4–1 mg/L), pH (3–9) and illumination time (90–150 min) on MTZ degradation efficiency was investigated through response surface methodology (RSM). The optimum values of the operating parameters were found to be as: irradiation time = 150 min, pH = 3, MTZ concentration of 10 ppm and catalyst dose = 0.7 g/L. The utmost degradation efficiencies were obtained 79% and 84%, respectively, in batch and continues flow mode at the optimum conditions. Thereafter, the effect of immobilization of the binary composite on FTO was studied at the obtained optimum conditions. The effect of temperature and light intensity on photocatalytic performance was also investigated, and the optimal values were found to be 25 °C and 400 W/m2, respectively. The mineralization of MTZ was investigated through TOC removal rates with the maximum value of 61.32%. The gas chromatography-mass spectrometry analysis was used to detect the photodegradation intermediates. The kinetic study of MTZ degradation by the binary composite followed the pseudo-first order by the reaction rate of 2 times greater than pristine Bi2S3. The main active species were found to be hydroxyl radical and superoxide by the trapping test method. The binary heterojunction demonstrated high durability and stability after five cycles. This work recommends a promising heterojunction for MTZ photodegradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Z.K. Modaresi, G. Karimi, D. Mowla, Study of co-combustion of dried sewage sludge with coke: thermogravimetric assessment and gaseous emissions. J. Environ. Chem. Eng. 7(1), 102871 (2019)

    Article  Google Scholar 

  2. S. Sahraeian, V. Alipour, O. Rahmanian, High efficient degradation of cefixime using UV/TiO2 photocatalytic process: a comparison between photocatalytic and photolytic. Hormozgan Med. J. 21(3), 159–168 (2017)

    Article  Google Scholar 

  3. N. Li et al., Z-scheme 2D/3D g-C3N4@ ZnO with enhanced photocatalytic activity for cephalexin oxidation under solar light. Chem. Eng. J. 352, 412–422 (2018)

    Article  Google Scholar 

  4. K. Bahareh, M.H. Habibi, High photocatalytic activity of light-driven Fe2TiO5 nanoheterostructure toward degradation of antibiotic metronidazole. J. Ind. Eng. Chem. 80, 292–300 (2019)

    Article  Google Scholar 

  5. J. Di et al., New insight of Ag quantum dots with the improved molecular oxygen activation ability for photocatalytic applications. Appl. Catal. B Environ. 188, 376–387 (2016)

    Article  Google Scholar 

  6. N. Mohamadi Zalani, B. Koozegar Kaleji, B. Mazinani, Synthesis and characterisation of the mesoporous ZnO–TiO2 nanocomposite; taguchi optimisation and photocatalytic methylene blue degradation under visible light. Mater. Technol. 35(5), 281–289 (2020)

    Article  Google Scholar 

  7. M. Batvandi, A. Haghighatzadeh, B. Mazinani, Synthesis of Ag 3 PO 4 microstructures with morphology-dependent optical and photocatalytic behaviors. Appl. Phys. A 126(7), 1–16 (2020)

    Article  Google Scholar 

  8. Y.N. Ren, W. Xu, L.X. Zhou, Y.Q. Zheng, Two new uranyl complexes as visible light driven photocatalysts for degradation of tetracycline. Polyhedron 139, 63–72 (2018)

    Article  Google Scholar 

  9. H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C.H.A. Tsang, X. Yang, S.T. Lee, Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chemie. 122(26), 4532–4536 (2010)

    Article  ADS  Google Scholar 

  10. X. Liu, H. Zhai, P. Wang, Q. Zhang, Z. Wang, Y. Liu, X. Zhang, Synthesis of a WO 3 photocatalyst with high photocatalytic activity and stability using synergetic internal Fe 3+ doping and superficial Pt loading for ethylene degradation under visible-light irradiation. Catal. Sci. Technol. 9(3), 652–658 (2019)

    Article  Google Scholar 

  11. W. Hussain, H. Malik, A. Bahadur, R.A. Hussain, M. Shoaib, S. Iqbal, H. Li, Synthesis and characterization of CdS photocatalyst with different morphologies: visible light activated dyes degradation study. Kinet. Catal. 59(6), 710–719 (2018)

    Article  Google Scholar 

  12. S. Bhatia, N. Verma, Photocatalytic activity of ZnO nanoparticles with optimization of defects. Mater. Res. Bull. 95, 468–476 (2017)

    Article  Google Scholar 

  13. H.Y. Jiang, J. Liu, K. Cheng, W. Sun, J. Lin, Enhanced visible light photocatalysis of Bi2O3 upon fluorination. J. Phys. Chem. C 117(39), 20029–20036 (2013)

    Article  Google Scholar 

  14. A. Malathi, J. Madhavan, M. Ashokkumar, P. Arunachalam, A review on BiVO4 photocatalyst: activity enhancement methods for solar photocatalytic applications. Appl. Catal. A 555, 47–74 (2018)

    Article  Google Scholar 

  15. H. Li, R. Liu, Y. Liu, H. Huang, H. Yu, H. Ming, Z. Kang, Carbon quantum dots/Cu2O composites with protruding nanostructures and their highly efficient (near) infrared photocatalytic behavior. J. Mater. Chem. 22(34), 17470–17475 (2012)

    Article  Google Scholar 

  16. N.T. Nguyen, M. Xia, P.N. Duchesne, L. Wang, C. Mao, A.A. Jelle, G.A. Ozin, Enhanced CO2 photocatalysis by indium oxide hydroxide supported on TiN@ TiO2 nanotubes. Nano Lett. 21(3), 1311–1319 (2021)

    Article  ADS  Google Scholar 

  17. Y. Zhao, C. Lin, H. Bi, Y. Liu, Q. Yan, Magnetically separable CuFe2O4/AgBr composite photocatalysts: preparation, characterization, photocatalytic activity and photocatalytic mechanism under visible light. Appl. Surf. Sci. 392, 701–707 (2017)

    Article  ADS  Google Scholar 

  18. T. Wang, S. Zhong, S. Zou, F. Jiang, L. Feng, X. Su, Novel Bi2WO6-coupled Fe3O4 magnetic photocatalysts: preparation, characterization and photodegradation of tetracycline hydrochloride. Photochem. Photobiol. 93(4), 1034–1042 (2017)

    Article  Google Scholar 

  19. D. Tang, G. Zhang, Fabrication of AgFeO2/g–C3N4 nanocatalyst with enhanced and stable photocatalytic performance. Appl. Surf. Sci. 391, 415–422 (2017)

    Article  ADS  Google Scholar 

  20. A. Haghighatzadeh, M. Hosseini, B. Mazinani, M. Shokouhimehr, Improved photocatalytic activity of ZnO–TiO2 nanocomposite catalysts by modulating TiO2 thickness. Mater. Res. Express. 6(11), 115060 (2019)

    Article  ADS  Google Scholar 

  21. E.S. Kim, H.J. Kang, G. Magesh, J.Y. Kim, J.-W. Jang, J.S. Lee, Improved photoelectrochemical activity of CaFe2O4/BiVO4 heterojunction photoanode by reduced surface recombination in solar water oxidation. ACS Appl. Mater. Interfaces 6(20), 17762–17769 (2014)

    Article  Google Scholar 

  22. J. He, Y. Cheng, T. Wang, D. Feng, L. Zheng, D. Shao, R. Zheng, Enhanced photocatalytic performances and magnetic recovery capacity of visible-light-driven Z-scheme ZnFe2O4/AgBr/Ag photocatalyst. Appl. Surf. Sci. 440, 99–106 (2018)

    Article  ADS  Google Scholar 

  23. N. Al-Zaqri, A. Alsalme, M.A. Ahmed, A.H. Galal, Construction of novel direct Z-scheme AgIO4–g–C3N4 heterojunction for photocatalytic hydrogen production and photodegradation of fluorescein dye. Diam. Relat. Mater. 109, 108071 (2020)

    Article  ADS  Google Scholar 

  24. H.S. Abd-Rabboh, M. Benaissa, M.S. Hamdy, M.A. Ahmed, M. Glal, Synthesis of an efficient, and recyclable mesoporous BiVO4/TiO2 direct Z-scheme heterojunction by sonochemical route for photocatalytic hydrogen production and photodegradation of rhodamine B dye in the visible region. Opt. Mater. 114, 110761 (2021)

    Article  Google Scholar 

  25. N. Askari, M. Beheshti, D. Mowla, M. Farhadian, Facile construction of novel Z-scheme MnWO4/Bi2S3 heterojunction with enhanced photocatalytic degradation of antibiotics. Mater. Sci. Semicond. Process. 127, 105723 (2021)

    Article  Google Scholar 

  26. M.A. Ahmed, A. Fahmy, M.G. Abuzaid, E.M. Hashem, Fabrication of novel AgIO4/SnO2 heterojunction for photocatalytic hydrogen production through direct Z-scheme mechanism. J. Photochem. Photobiol. A Chem. 400, 112660 (2020)

    Article  Google Scholar 

  27. M.A. Ahmed, N. Al-Zaqri, A. Alsalme, A.H. Glal, M. Esa, Rapid photocatalytic degradation of RhB dye and photocatalytic hydrogen production on novel curcumin/SnO 2 nanocomposites through direct Z-scheme mechanism. J. Mater. Sci. Mater. Electron. 31(21), 19188–19203 (2020)

    Article  Google Scholar 

  28. N. Askari, M. Beheshti, D. Mowla, M. Farhadian, Fabrication of CuWO4/Bi2S3/ZIF67 MOF: a novel double Z-scheme ternary heterostructure for boosting visible-light photodegradation of antibiotics. Chemosphere 251, 126453 (2020)

    Article  ADS  Google Scholar 

  29. D.C. Onwudiwe, O.A. Oyewo, U. Atamtürk, O. Ojelere, S. Mathur, Photocatalytic reduction of Cr (VI) using star-shaped Bi2S3 obtained from microwave irradiation of bismuth complex. J. Environ. Chem. Eng. 8(4), 103816 (2020)

    Article  Google Scholar 

  30. J.C. Hill, K.-S. Choi, Synthesis and characterization of high surface area CuWO 4 and Bi 2 WO 6 electrodes for use as photoanodes for solar water oxidation. J. Mater. Chem. A 1(16), 5006–5014 (2013)

    Article  Google Scholar 

  31. G. Simon, T. Gyulavári, K. Hernádi, M. Molnár, Z. Pap, G. Veréb, T. Alapi, Photocatalytic ozonation of monuron over suspended and immobilized TiO2–study of transformation, mineralization and economic feasibility. J. Photochem. Photobiol. A 356, 512–520 (2018)

    Article  Google Scholar 

  32. P. Sun, R. Xue, W. Zhang, I. Zada, Q. Liu, J. Gu, D. Zhang, Photocatalyst of organic pollutants decomposition: TiO2/glass fiber cloth composites. Catal. Today 274, 2–7 (2016)

    Article  Google Scholar 

  33. S. Yaparatne, C.P. Tripp, A. Amirbahman, Photodegradation of taste and odor compounds in water in the presence of immobilized TiO2–SiO2 photocatalysts. J. Hazard. Mater. 346, 208–217 (2018)

    Article  Google Scholar 

  34. G. Genesio, J. Maynadié, M. Carboni, D. Meyer, Recent status on MOF thin films on transparent conductive oxides substrates (ITO or FTO). New J. Chem. 42(4), 2351–2363 (2018)

    Article  Google Scholar 

  35. J.H. Kim, A. Ma, H. Jung, H.Y. Kim, H.R. Choe, Y.H. Kim, K.M. Nam, In situ growth of the Bi2S3 nanowire array on the Bi2MoO6 film for an improved photoelectrochemical performance. ACS Omega 4(17), 17359–17365 (2019)

    Article  Google Scholar 

  36. N. Askari, M. Beheshti, D. Mowla, M. Farhadian, Synthesis of CuWO4/Bi2S3 Z-scheme heterojunction with enhanced cephalexin photodegradation. J. Photochem. Photobiol. A Chem. 394, 112463 (2020)

    Article  Google Scholar 

  37. M.S. Legnoverde, S. Simonetti, E.I. Basaldella, Influence of pH on cephalexin adsorption onto SBA-15 mesoporous silica: theoretical and experimental study. Appl. Surf. Sci. 300, 37–42 (2014)

    Article  ADS  Google Scholar 

  38. K. Dashtian, M. Ghaedi, H. Shirinzadeh, S. Hajati, S. Shahbazi, Achieving enhanced blue-light-driven photocatalysis using nanosword-like VO2/CuWO4 type II n–n heterojunction. Chem. Eng. J. 339, 189–203 (2018)

    Article  Google Scholar 

  39. M. Aram, M. Farhadian, A.R.S. Nazar, S. Tangestaninejad, P. Eskandari, B.H. Jeon, Metronidazole and Cephalexin degradation by using of Urea/TiO2/ZnFe2O4/Clinoptiloite catalyst under visible-light irradiation and ozone injection. J. Mol. Liq. 304, 112764 (2020)

    Article  Google Scholar 

  40. M. Malakootian, A. Nasiri, A. Asadipour, E. Kargar, Facile and green synthesis of ZnFe2O4@ CMC as a new magnetic nanophotocatalyst for ciprofloxacin degradation from aqueous media. Process Saf. Environ. Prot. 129, 138–151 (2019)

    Article  Google Scholar 

  41. J. Guozheng, W. Guoxiang, Z. Yong, Z. Linsheng, Effects of light intensity and H2O2 on photocatalytic degradation of phenol in wastewater using TiO2/ACF. Int. Conf. Digit. Manuf. Autom. 1, 623–626 (2010)

    Google Scholar 

  42. R. Mostafaloo, M.H. Mahmoudian, M. Asadi-Ghalhari, BiFeO3/Magnetic nanocomposites for the photocatalytic degradation of cefixime from aqueous solutions under visible light. J. Photochem. Photobiol. Chem. 382, 111926 (2019)

    Article  Google Scholar 

  43. F. Torki, H. Faghihian, Sunlight-assisted decomposition of cephalexin by novel synthesized NiS-PPY-Fe3O4 nanophotocatalyst. J. Photochem. Photobiol. Chem. 338, 49–59 (2017)

    Article  Google Scholar 

  44. B. Li et al., Facile synthesis of bismuth oxyhalogen-based Z-scheme photocatalyst for visible-light-driven pollutant removal: kinetics, degradation pathways and mechanism. J. Clean. Prod. 225, 898–912 (2019)

    Article  Google Scholar 

  45. S. Azimi, A. Nezamzadeh-Ejhieh, “Enhanced activity of clinoptilolite-supported hybridized PbS–CdS semiconductors for the photocatalytic degradation of a mixture of tetracycline and cephalexin aqueous solution. J. Mol. Catal. A Chem. 408, 152–160 (2015)

    Article  Google Scholar 

  46. E. Asgari, A. Esrafili, A.J. Jafari, R.R. Kalantary, H. Nourmoradi, M. Farzadkia, The comparison of ZnO/polyaniline nanocomposite under UV and visible radiations for decomposition of metronidazole: degradation rate, mechanism and mineralization. Process Saf. Environ. Prot. 128, 65–76 (2019)

    Article  Google Scholar 

  47. N. Chaibakhsh, N. Ahmadi, M.A. Zanjanchi, Optimization of photocatalytic degradation of neutral red dye using TiO2 nanocatalyst via box-behnken design. Desalin. Water Treat. 57(20), 9296–9306 (2016)

    Article  Google Scholar 

  48. J. Guozheng, W. Guoxiang, Z. Yong, Z. Linsheng, Effects of light intensity and H2O2 on photocatalytic degradation of phenol in wastewater using TiO2/ACF, in 2010 international conference on digital manufacturing & automation. 1, 623–626, (2010)

  49. M.L. Tran, C.-C. Fu, R.-S. Juang, Effects of water matrix components on degradation efficiency and pathways of antibiotic metronidazole by UV/TiO2 photocatalysis. J. Mol. Liq. 276, 32–38 (2019)

    Article  Google Scholar 

  50. M. Salimi et al., Photocatalytic degradation of metronidazole using D–g–C3N4–Bi5O7I composites under visible light irradiation: degradation product, and mechanisms. ChemistrySelect 4(35), 10288–10295 (2019)

    Article  Google Scholar 

  51. S. Fakhravar, M. Farhadian, S. Tangestaninejad, Excellent performance of a novel dual Z-scheme Cu2S/Ag2S/BiVO4 heterostructure in metronidazole degradation in batch and continuous systems: immobilization. Appl. Surf. Sci. 505, 144599 (2020)

    Article  Google Scholar 

  52. J. Martini, C.A. Orge, J.L. Faria, M.F.R. Pereira, O.S.G.P. Soares, Catalytic advanced oxidation processes for sulfamethoxazole degradation. Appl. Sci. 9(13), 2652 (2019)

    Article  Google Scholar 

  53. M.L. Tran, C.-C. Fu, R.-S. Juang, Removal of metronidazole by TiO 2 and ZnO photocatalysis: a comprehensive comparison of process optimization and transformation products. Environ. Sci. Pollut. Res. 25(28), 28285–28295 (2018)

    Article  Google Scholar 

  54. J. Cao, J. Li, W. Chu, W. Cen, Facile synthesis of Mn-doped BiOCl for metronidazole photodegradation: optimization, degradation pathway, and mechanism. Chem. Eng. J. 400, 125813 (2020)

    Article  Google Scholar 

  55. L. Tong, S. Pérez, C. Gonçalves, F. Alpendurada, Y. Wang, D. Barceló, Kinetic and mechanistic studies of the photolysis of metronidazole in simulated aqueous environmental matrices using a mass spectrometric approach. Anal. Bioanal. Chem. 399(1), 421–428 (2011)

    Article  Google Scholar 

  56. M. Sanchez, M.J. Rivero, I. Ortiz, Kinetics of dodecylbenzenesulphonate mineralisation by TiO2 photocatalysis. Appl. Catal. B Environ. 101(3–4), 515–521 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the Environmental Research Center in Petroleum and Petrochemical Industries of Shiraz University and Isfahan University for their technical supports and also Farabi Pharmaceutical Company for supplying the required drug.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehrdad Farhadian or Dariush Mowla.

Ethics declarations

Conflict of interest

The authors express that there is no conflict of interest for this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askari, N., Farhadian, M., Mowla, D. et al. Evaluating the binary Z-scheme Bi2S3/CuWO4 immobilized on FTO as a visible-light-driven photocatalyst for metronidazole degradation-response surface method. Appl. Phys. A 127, 766 (2021). https://doi.org/10.1007/s00339-021-04683-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04683-7

Keywords

Navigation