Skip to main content
Log in

Ba/Zr Co-substituted h-YMnO3 manganite: study of its structural, optical and electrical properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present communication, the composition of barium and zirconium modified YMnO3 ceramic, i.e. Y0.95Ba0.05Mn0.95Zr0.05O3, has been synthesized using the solid-state reaction method, and emphasis has been made to observe the variations on structural, optical, electrical, and ferroelectric properties of the prepared ceramic. The primary structural analysis has been verified by the X-ray diffraction technique. XRD patterns revealed that the sample has been crystallized in a hexagonal geometry with P63cm space group symmetry. Further, Rietveld’s refinement of Y0.95Ba0.05Mn0.95Zr0.05O3 ceramic has been done to support the results of XRD. The lattice parameters are increased, while the average crystallite size is decreased with Ba2+ and Zr4+ doping. A detailed study of the optical property of the prepared sample was done using the UV-DRS method. The optical energy band gap of the sample is found to be ~ 1.534 eV, while the Urbach’s energy is found to be ~ 0.169 eV. The dielectric constant and dielectric loss of the ceramic show the dispersion due to Maxwell–Wagner’s type of interfacial polarization. Moreover, the given ceramic sample reveals the enhanced value of the dielectric constant. The complex modulus measurement revealed that the transport phenomenon in this ceramic indicates the relaxation mechanism of the non-Debye’s type. The complex impedance study of the given ceramic has been done to explore the grain and grain boundaries contribution, which are in sequence the controlling factors for the electrical properties of the given material. The ceramic sample with an enhanced dielectric constant may be appropriate for device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.W. Cheong, M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007)

    Article  ADS  Google Scholar 

  2. R. Feyerherm, E. Dudzik, O. Prokhnenko, D.N. Argyriou, Rare earth magnetism and ferroelectricity in RMnO3. J. Phys. Conf. Ser. 200, 1–4 (2010). https://doi.org/10.1088/1742-6596/200/1/012032

    Article  Google Scholar 

  3. B.B. Van Aken, T.T.M. Palstra, A. Filippetti, N.A. Spaldin, The origin of ferroelectricity in magnetoelectric YMnO3. Nat. Mater. (2004). https://doi.org/10.1038/nmat1080

    Article  Google Scholar 

  4. N.A. Spaldin, S. Cheong, R. Ramesh, Multiferroics: past, present, and future additional resources for physics today. Cit. Phys. Today 63, 38 (2010)

    Article  Google Scholar 

  5. J.M. Patete, J. Han, A.L. Tiano, H. Liu, M.G. Han, J.W. Simonson, Y. Li, A.C. Santulli, M.C. Aronson, A.I. Frenkel, Y. Zhu, S.S. Wong, Observation of ferroelectricity and structure-dependent magnetic behavior in novel one-dimensional motifs of pure, crystalline yttrium manganese oxides. J. Phys. Chem. C. 118, 21695–21705 (2014). https://doi.org/10.1021/jp5068582

    Article  Google Scholar 

  6. B. Lorenz, Hexagonal manganites—(RMnO 3): class (I) multiferroics with strong coupling of magnetism and ferroelectricity. ISRN Condens. Matter Phys. 2013, 1–43 (2013). https://doi.org/10.1155/2013/497073

    Article  Google Scholar 

  7. S. Lee, A. Pirogov, M. Kang, K.H. Jang, M. Yonemura, T. Kamiyama, S.W. Cheong, F. Gozzo, N. Shin, H. Kimura, Y. Noda, J.G. Park, Giant magneto-elastic coupling in multiferroic hexagonal manganites. Nature (2008). https://doi.org/10.1038/nature06507

    Article  Google Scholar 

  8. B.B. Van Aken, A. Meelsma, T.T.M. Palstra, Hexagonal YMnO3. Acta crystallogr. Sect. C Cryst. Struct. Commun. 57, 230–232 (2001). https://doi.org/10.1107/S0108270100015663

    Article  Google Scholar 

  9. K.S. Sivaraj, M.R. Anantharaman, On the conduction mechanism of bismuth substituted multiferroic yttrium manganite using dielectric spectroscopy. Mater. Technol. 36, 159–168 (2021). https://doi.org/10.1080/10667857.2020.1736850

    Article  Google Scholar 

  10. D. Varshney, P. Sharma, A. Kumar, Room temperature structure vibrational and dielectric properties of Ho modified YMnO3. Mater. Res. Express. (2015). https://doi.org/10.1088/2053-1591/2/7/076102

    Article  Google Scholar 

  11. A.K. Singh, S. Patnaik, S.D. Kaushik, V. Siruguri, Dominance of magnetoelastic coupling in multiferroic hexagonal YMnO 3. Phys. Rev. B – Condens. Matter. Mater. Phys. (2010). https://doi.org/10.1103/PhysRevB.81.184406

    Article  Google Scholar 

  12. G. Dixit, P. Kumar, P. Negi, K. Asokan, Investigations of structural and transport properties of Ca doped yttrium manganites. Ferroelectrics 516, 74–81 (2017). https://doi.org/10.1080/00150193.2017.1362286

    Article  Google Scholar 

  13. R.K. Thakur, R. Thakur, A.M. Awasthi, V. Ganesan, N.K. Gaur, The effect of strontium doping on the structural and magnetic transition of YMnO3. AIP Conf. Proc. 1447, 1013–1014 (2012). https://doi.org/10.1063/1.4710349

    Article  ADS  Google Scholar 

  14. Y. Zhao, Y. Rao, B. Luo, C. Chen, H. Xing, L. Niu, J. Wang, K. Jin, Electrical-transport and magnetodielectric properties in YMnO3/La0.67Sr0.33MnO3 heterostructure. J. Phys. Chem. C. 120, 22318–22322 (2016). https://doi.org/10.1021/acs.jpcc.6b05969

    Article  Google Scholar 

  15. A. Durán, G. Guzmán, C.I. Ochoa-Guerrero, C. Herbert, R. Escudero, F. Morales, R. Escamilla, Ti-doped YMnO 3: Magnetic and thermal studies at low temperature and dielectric properties at high temperature. J. Appl. Phys. 125, 1–10 (2019). https://doi.org/10.1063/1.5055228

    Article  Google Scholar 

  16. K. Asokan, Y.S. Chen, C.W. Pao, H.M. Tsai, C.W.O. Lee, C.H. Lin, H.C. Hsueh, D.C. Ling, W.F. Pong, J.W. Chiou, M.H. Tsai, O. Pea, C. Moure, Effect of Co, Ni, and Cu substitution on the electronic structure of hexagonal YMnO3 studied by x-ray absorption spectroscopy. Appl. Phys. Lett. 95, 1–4 (2009). https://doi.org/10.1063/1.3224905

    Article  Google Scholar 

  17. R. Das, P. Kumar, R.N.P. Choudhary, Studies of structural and electrical properties of (Pb0.9Bi0.05Dy0.05)(Fe0.1Ti0.9)O3 ceramic. Appl. Phys. A Mater. Sci. Process. 126, 1–11 (2020). https://doi.org/10.1007/s00339-020-04074-4

    Article  Google Scholar 

  18. B. Miccoli, V. Cauda, A. Bonanno, A. Sanginario, K. Bejtka, F. Bella, M. Fontana, D. Demarchi, One-dimensional ZnO/gold junction for simultaneous and versatile multisensing measurements. Nat. Publ. Gr. (2016). https://doi.org/10.1038/srep29763

    Article  Google Scholar 

  19. C. Baiano, E. Schiavo, C. Gerbaldi, F. Bella, G. Meligrana, G. Talarico, P. Maddalena, M. Pavone, A.B. Muñoz-García, Role of surface defects in CO 2 adsorption and activation on CuFeO 2 delafossite oxide. Mol. Catal. (2020). https://doi.org/10.1016/j.mcat.2020.111181

    Article  Google Scholar 

  20. A. Dokouzis, F. Bella, K. Theodosiou, C. Gerbaldi, G. Leftheriotis, Photoelectrochromic devices with cobalt redox electrolytes. Mater. Today Energy (2019). https://doi.org/10.1016/j.mtener.2019.100365

    Article  Google Scholar 

  21. F. Bella, Nanoscale advances first-principles study of Na insertion at TiO 2 anatase surfaces: new hints for Na-ion battery design. Nanoscale Adv. 2, 2745–2751 (2020). https://doi.org/10.1039/d0na00230e

    Article  ADS  Google Scholar 

  22. J. Shukla, M.D. Varshney, A. Mishra, Analysis of room temperature structural, optical, and electrical properties of bulk h – YMnO3 manganite. Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2020.11.875

    Article  Google Scholar 

  23. O. Polat, M. Coskun, F.M. Coskun, Z. Durmus, M. Caglar, A. Turut, Os doped YMnO3 multiferroic: a study investigating the electrical properties through tuning the doping level. J. Alloys Compd. 752, 274–288 (2018). https://doi.org/10.1016/j.jallcom.2018.04.200

    Article  Google Scholar 

  24. J. Shukla, A. Mishra, Influence of Ba2+ doping on structural and electrical transport properties of YMnO3 ceramics. J. Supercond. Nov. Magn. (2020). https://doi.org/10.1007/s10948-020-05693-x

    Article  Google Scholar 

  25. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A. (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  26. P.G.R. Achary, A.A. Nayak, R.K. Bhuyan, R.N.P. Choudhary, S.K. Parida, Effect of cerium dopant on the structural and electrical properties of SrMnO3 single perovskite. J. Mol. Struct. 1226, 129391 (2021). https://doi.org/10.1016/j.molstruc.2020.129391

    Article  Google Scholar 

  27. M. Khan, A. Mishra, J. Shukla, P. Sharma, X-ray analysis of BaTiO 3 ceramics by Williamson-Hall and size strain plot methods. AIP Conf. Proc. 2100, 1–6 (2019). https://doi.org/10.1063/1.5098692

    Article  Google Scholar 

  28. J. Shukla, S. Bisen, M. Khan, A. Mishra, Study of structural and optical properties of barium zirconate titanate prepared through sol - Gel auto combustion method. AIP Conf. Proc. (2019). https://doi.org/10.1063/1.5113033

    Article  Google Scholar 

  29. A. Han, M. Zhao, M. Ye, J. Liao, Z. Zhang, N. Li, Crystal structure and optical properties of YMnO3 compound with high near-infrared reflectance. Sol. Energy 91, 32–36 (2013). https://doi.org/10.1016/j.solener.2013.01.011

    Article  ADS  Google Scholar 

  30. O. Polat, F.M. Coskun, M. Coskun, Z. Durmus, Y. Caglar, M. Caglar, A. Turut, Tailoring the band gap of ferroelectric YMnO 3 through tuning the Os doping level. J. Mater. Sci. Mater. Electron. 30, 3443–3451 (2019). https://doi.org/10.1007/s10854-018-00619-9

    Article  Google Scholar 

  31. A.S. Hassanien, A.A. Akl, Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices Microstruct. 89, 153–169 (2016). https://doi.org/10.1016/j.spmi.2015.10.044

    Article  ADS  Google Scholar 

  32. G.N. Bhargavi, A. Khare, T. Badapanda, P.K. Ray, N. Brahme, Influence of Eu doping on the structural, electrical and optical behavior of barium zirconium titanate ceramic. Ceram. Int. 44, 1817–1825 (2018). https://doi.org/10.1016/j.ceramint.2017.10.116

    Article  Google Scholar 

  33. W.C. Yi, S.-I.I. Kwun, J.G. Yoon, Study on the electronic structure of hexagonal and orthorhombic YMnO3. J. Phys. Soc. Jpn. 69, 2706–2707 (2000). https://doi.org/10.1143/JPSJ.69.2706

    Article  ADS  Google Scholar 

  34. S.S. Arafat, S. Ibrahim, H. Al Fannakh, Structural, optical and electrical properties of multiferroic BiFe1-xNixO3 ceramic. J. Aust. Ceram. Soc. 56, 867–872 (2020). https://doi.org/10.1007/s41779-019-00408-5

    Article  Google Scholar 

  35. M. Coşkun, A.O. Polat, F.M. Coşkun, Z. Durmuş, C.M. Caglar, A. Türüt, The electrical modulus and other dielectric properties by the impedance spectroscopy of LaCrO3 and LaCr0.90Ir0.10O3 perovskites. RSC Adv. 8, 4634–4648 (2018). https://doi.org/10.1039/c7ra13261a

    Article  ADS  Google Scholar 

  36. M. Coskun, O. Polat, F.M. Coskun, B.Z. Kurt, Z. Durmus, M. Caglar, A. Turut, The impact of Ir doping on the electrical properties of YbFe1−xIrxO3 perovskite-oxide compounds. J. Mater. Sci. Mater. Electron. 31, 1731–1744 (2020). https://doi.org/10.1007/s10854-019-02691-1

    Article  Google Scholar 

  37. Q. Liu, J. Liu, D. Lu, T. Li, W. Zheng, Dense Sm and Mn Co-doped BaTiO 3 ceramics with high permittivity. Materials (Basel) (2019). https://doi.org/10.3390/ma12040678

    Article  Google Scholar 

  38. M.A. Dar, D. Varshney, Synthesis, structural, optical and dielectric properties of transition metal doped ZnMnO nanoparticles by sol-gel combustion technique. Superlattices Microstruct. (2018). https://doi.org/10.1016/j.spmi.2017.12.047

    Article  Google Scholar 

  39. A. Shukla, N. Shukla, R.N.P. Choudhary, Dielectric characteristics of La-modified PbTiO3 nanoceramics. Phase Transit. 90, 362–370 (2017). https://doi.org/10.1080/01411594.2016.1201819

    Article  Google Scholar 

  40. M. Khan, S. Bisen, J. Shukla, A. Mishra, P. Sharma, Investigations on the structural and electrical properties of Sm3+-doped nickel ferrite-based ceramics. J. Supercond. Nov. Magn. (2020). https://doi.org/10.1007/s10948-020-05754-1

    Article  Google Scholar 

  41. M.K. Shamim, S. Sharma, S. Sinha, E. Nasreen, Dielectric relaxation and modulus spectroscopy analysis of (Na0:47 K0:47 Li0:06) NbO3 ceramics. J. Adv. Dielectr. 7, 1–11 (2017). https://doi.org/10.1142/S2010135X17500205

    Article  Google Scholar 

  42. S. Bisen, M. Khan, A. Mishra, Tailoring effect of large polaron hopping in the conduction mechanism of Ca-modified BaTiO3 system. J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03452-1

    Article  Google Scholar 

  43. K. Auromun, S. Hajra, R.N.P. Choudhary, B. Behera, Structural, dielectric and electrical characteristics of yttrium modified 0.7BiFeO3–0.3PbTiO3. Solid State Sci. 101, 106139 (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106139

    Article  Google Scholar 

  44. I.S. Debbebi, S. Megdiche-Borchani, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, Study of complex impedance spectroscopic properties of La0.72xDyxSr0.3MnO3 perovskite oxides. R. Soc. Open Sci. (2018). https://doi.org/10.1098/rsos.172201

    Article  Google Scholar 

  45. R. Sinha, S. Basu, A.K. Meikap, The investigation of the electrical transport properties of Gd doped YCrO3 nanoparticles. Mater. Res. Bull. (2018). https://doi.org/10.1016/j.materresbull.2017.08.055

    Article  Google Scholar 

  46. K. Verma, A. Kumar, D. Varshney, Dielectric relaxation behavior of A xCo 1-xFe 2O 4 (A = Zn, Mg) mixed ferrites. J. Alloys Compd. 526, 91–97 (2012). https://doi.org/10.1016/j.jallcom.2012.02.089

    Article  Google Scholar 

  47. B. Dhanalakshmi, B.C. Sekhar, K.V. Vivekananda, B.S. Rao, B.P. Rao, P.S.V.S. Rao, Enhanced dielectric and magnetic properties in Mn-doped bismuth ferrite multiferroic nanoceramics. Appl. Phys. A Mater. Sci. Process. 126, 1–9 (2020). https://doi.org/10.1007/s00339-020-03745-6

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to UGC-DAE-CSR Indore for providing measurement facilities, Dr. M. Gupta for XRD measurement, Dr. U. Deshpande for UV-DRS measurement, Dr. R. J. Choudhary, and Mr. Bharadwaj for dielectric measurement. MPCST, Bhopal (4836/CST/R&D/Phy & Engg Sc/2014) is gratefully acknowledged for the financial aid. We are thankful to Dr. Pallavi Saxena, Mr. Bhargav Pathak, Ms. Prachi Joshi, and Ms. Anisha Jain for their fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti Shukla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, J., Bisen, S., Khan, M. et al. Ba/Zr Co-substituted h-YMnO3 manganite: study of its structural, optical and electrical properties. Appl. Phys. A 127, 764 (2021). https://doi.org/10.1007/s00339-021-04913-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04913-y

Keywords

Navigation