Skip to main content

Advertisement

Log in

Mechanical and electronic properties of perovskite hydrides LiCaH\(_{\mathrm {{3}}}\) and NaCaH\(_{\mathrm {{3}}}\) for hydrogen storage applications

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

New methods and materials for storing hydrogen efficiently and safely have been studied intensively recently since hydrogen is being a great energy carrier for future green energy usage. One of these material groups is lightweight perovskite hydrides. The current study deals with \(\hbox {LiCaH}_{\mathrm {3}}\) and \(\hbox {NaCaH}_{\mathrm {3}}\) perovskite hydrides with regards to structural, elastic, electronic, mechanical stability, and hydrogen storage properties. All computations have been done using first principles calculations. Both perovskite hydrides are found to be mechanically stable and ductile in nature. Electronic band structures of hydrides depict indirect band gaps for both perovskite hydrides, indicating that they are non-metallic. \(\hbox {LiCaH}_{\mathrm {3}}\) and \(\hbox {NaCaH}_{\mathrm {3}}\) have band gaps as 2.37 eV and 2.23 eV, respectively. The gravimetric hydrogen density of \(\hbox {LiCaH}_{\mathrm {3}}\) is found to be 5.7 wt% and 4.38 wt% for \(\hbox {NaCaH}_{\mathrm {3 }}\)which are reasonable in line with the goal that is set by US Energy Department which is 4.5 wt%.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data is available upon request from the corresponding author.]

References

  1. S. Al, M. Yortanlı, E. Mete, Lithium metal hydrides (Li\(_{2}\)CaH\(_{4}\) and Li\(_{2}\)SrH\(_{4}\)) for hydrogen storage; mechanical, electronic and optical properties. Int. J. Hydrogen Energy. 45(38), 18782–18788 (2020)

    Article  Google Scholar 

  2. S. Al, Investigations of Physical Properties of XTiH\(_{3 }\) and Implications for Solid State Hydrogen Storage, in Zeitschrift für Naturforschung A. p. 1023 (2019)

  3. S. Al, Theoretical investigations of elastic and thermodynamic properties of LiXH\(_{4}\) compounds for hydrogen storage. Int. J. Hydrogen Energy. 44(3), 1727–1734 (2019)

    Article  Google Scholar 

  4. V.A. Yartys et al., Magnesium based materials for hydrogen based energy storage: past, present and future. Int. J. Hydrogen Energy 44(15), 7809–7859 (2019)

    Article  Google Scholar 

  5. K. Edalati et al., Design and synthesis of a magnesium alloy for room temperature hydrogen storage. Acta Mater. 149, 88–96 (2018)

    Article  ADS  Google Scholar 

  6. H. Ziani et al., Ab initio studies of A\(_{2}\)PtH\(_{6} (A~=\) K, Rb) materials for hydrogen storage purposes and optoelectronic applications. Mater. Sci. Eng., B 269, 115154 (2021)

    Article  Google Scholar 

  7. A. Andreasen, Hydrogenation properties of Mg-Al alloys. Int. J. Hydrogen Energy 33(24), 7489–7497 (2008)

    Article  Google Scholar 

  8. L.F. Chanchetti et al., Technological forecasting of hydrogen storage materials using patent indicators. Int. J. Hydrogen Energy 41(41), 18301–18310 (2016)

    Article  Google Scholar 

  9. H. Barthelemy, M. Weber, F. Barbier, Hydrogen storage: recent improvements and industrial perspectives. Int. J. Hydrogen Energy 42(11), 7254–7262 (2017)

    Article  Google Scholar 

  10. S. Al, A. Iyigor, Structural, electronic, elastic and thermodynamic properties of hydrogen storage magnesium-based ternary hydrides. Chem. Phys. Lett. 743, 137184 (2020)

    Article  Google Scholar 

  11. S. Al, C. Kurkcu, C. Yamcicier, High pressure phase transitions and physical properties of Li\(_{2}\)MgH\(_{4}\); implications for hydrogen storage. Int. J. Hydrogen Energy 45(7), 4720–4730 (2020)

    Article  Google Scholar 

  12. J. Völkl, G. Alefeld, 5 - Hydrogen Diffusion in Metals, in Diffusion in Solids. (Academic Press, 1975), pp. 231–302

  13. T. Vegge et al., Trends in hydride formation energies for magnesium-3d transition metal alloys. J. Alloy. Compd. 386(1), 1–7 (2005)

    Article  Google Scholar 

  14. M. Garara et al., Hydrogen storage properties of perovskite-type MgCoH3 under strain effect. Mater. Chem. Phys. 254, 123417 (2020)

    Article  Google Scholar 

  15. A.H. Reshak et al., First-principles calculations of structural, elastic, electronic, and optical properties of perovskite-type KMgH\(_{3 }\) crystals: novel hydrogen storage material. J. Phys. Chem. B 115(12), 2836–2841 (2011)

    Article  Google Scholar 

  16. S. Hayat et al., First-principles investigations of the structural, optoelectronic, magnetic and thermodynamic properties of hydride perovskites XCuH\(_{3} (X =\) Co, Ni, Zn) for hydrogen storage applications. Optik 228, 166187 (2021)

    Article  ADS  Google Scholar 

  17. Y. Bouhadda et al., Ab initio calculations study of the electronic, optical and thermodynamic properties of NaMgH\(_{3}\), for hydrogen storage. J. Phys. Chem. Solids 71(9), 1264–1268 (2010)

    Article  ADS  Google Scholar 

  18. Y. Bouhadda, N. Fenineche, Y. Boudouma, Hydrogen storage: lattice dynamics of orthorhombic NaMgH\(_{3}\). Physica B 406(4), 1000–1003 (2011)

    Article  ADS  Google Scholar 

  19. Y. Bouhadda et al., Elastic properties of perovskite-type hydride NaMgH\(_{3}\) for hydrogen storage. Int. J. Hydrogen Energy 38(3), 1484–1489 (2013)

    Article  Google Scholar 

  20. P. Vajeeston, P. Ravindran, H. Fjellvåg, Structural investigation and thermodynamical properties of alkali calcium trihydrides. J. Chem. Phys. 132(11), 114504 (2010)

    Article  ADS  Google Scholar 

  21. T. Hussain et al., Reversible hydrogen uptake by BN and BC\(_{3}\) monolayers functionalized with small Fe clusters: a route to effective energy storage. J. Phys. Chem. A 120(12), 2009–2013 (2016)

    Article  Google Scholar 

  22. T.A. Maark et al., Structural, electronic and thermodynamic properties of Al-and Si-doped \(\alpha \)-, \(\gamma \)-, and \(\beta \)-MgH\(_{2}\): Density functional and hybrid density functional calculations. Int. J. Hydrogen Energy 37(11), 9112–9122 (2012)

    Article  Google Scholar 

  23. T. Hussain et al., Hydrogen storage properties of light metal adatoms (Li, Na) decorated fluorographene monolayer. Nanotechnology 26(27), 275401 (2015)

    Article  Google Scholar 

  24. S.R. Naqvi et al., Metallized siligraphene nanosheets (SiC7) as high capacity hydrogen storage materials. Strategies 14, 17 (2018)

    Google Scholar 

  25. G.D. Yıldız et al., Computational investigations of mechanic, electronic and lattice dynamic properties of yttrium based compounds. Int. J. Mod. Phys. B 32(20), 1850214 (2018)

    Article  ADS  Google Scholar 

  26. P. Giannozzi et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21(39), 395502 (2009)

    Google Scholar 

  27. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. J Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  28. A.M. Rappe et al., Optimized pseudopotentials. Phys. Rev. B 41(2), 1227 (1990)

    Article  ADS  Google Scholar 

  29. M. Methfessel, A. Paxton, High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40(6), 3616 (1989)

    Article  ADS  Google Scholar 

  30. P. Giannozzi et al., Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys.: Condens. Matter 29(46), 465901 (2017)

    Google Scholar 

  31. R. Hill, The elastic behaviour of a crystalline aggregate. J. Proc. Phys. Soc. Sect. A. 65(5), 349 (1952)

    Article  ADS  Google Scholar 

  32. R. Gaillac, P. Pullumbi, F.X. Coudert, ELATE: an open-source online application for analysis and visualization of elastic tensors. J. Phys.: Condens. Matter 28(27), 275201 (2016)

    Google Scholar 

  33. F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA 30(9), 244–247 (1944)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. P. Khowash et al., Electronic structure of light metal hydrides. Phys. Rev. B. 55(3), 1454 (1997)

    Article  ADS  Google Scholar 

  35. S. Al, N. Arikan, A. Iyigör, Investigations of structural, elastic, electronic and thermodynamic properties of X\(_{2}\)TiAl alloys: a computational study. Zeitschrift für Naturforschung A 73(9), 859–867 (2018)

    Article  ADS  Google Scholar 

  36. P. Li et al., First-principles investigations on structural stability, elastic and electronic properties of Co\(_{7}M_{6} (M=\) W, Mo, Nb) \({\upmu }\) phases. Mol. Simul. 45(9), 752–758 (2019)

    Article  Google Scholar 

  37. S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. J. Sci. 45(367), 823–843 (1954)

    Article  Google Scholar 

  38. C. Kürkçü, Ç. Yamçıçıer, Structural, electronic, elastic and vibrational properties of two dimensional graphene-like BN under high pressure. Solid State Commun. 303–304, 113740 (2019)

    Article  Google Scholar 

  39. V.V. Bannikov, I.R. Shein, A.L. Ivanovskii, Electronic structure, chemical bonding and elastic properties of the first thorium-containing nitride perovskite TaThN\(_{3}\). Physica Status Solidi (RRL) – Rapid Res. Lett. 1(3), 89–91 (2007)

    Article  ADS  Google Scholar 

  40. L. Liu et al., First-principles investigations on structural and elastic properties of orthorhombic TiAl under pressure. Curr. Comput.-Aided Drug Des. 7(4), 111 (2017)

    Google Scholar 

  41. C. Kürkçü, Z. Merdan, Ç. Yamçıçıer, Pressure-induced phase transitions, electronic, elastic and vibrational properties of zinc oxide under high pressure. Indian J. Phys. 93(8), 979–989 (2019)

    Article  ADS  Google Scholar 

  42. J. Chang et al., Structure and mechanical properties of tantalum mononitride under high pressure: a first-principles study. J. Appl. Phys. 112(8), 083519 (2012)

    Article  ADS  Google Scholar 

  43. H. Ledbetter, A. Migliori, A general elastic-anisotropy measure. J. Appl. Phys. 100(6), 063516 (2006)

    Article  ADS  Google Scholar 

  44. S. Lamichhane et al., Structural and electronic properties of perovskite hydrides ACaH\(_{3} (A=\) Cs and Rb). J Bibechana 13, 94–99 (2016)

    Article  Google Scholar 

  45. U. Eberle, M. Felderhoff, F. Schueth, Chemical and physical solutions for hydrogen storage. J Angewandte Chemie International Edition 48(36), 6608–6630 (2009)

    Article  Google Scholar 

  46. D.P. Broom, Hydrogen Storage Materials; The Characterisation of Their Storage Properties, 1st edn. (Springer-Verlag, London, 2011)

    Book  Google Scholar 

  47. D. Pukazhselvan, V. Kumar, S.K. Singh, High capacity hydrogen storage: basic aspects, new developments and milestones. Nano Energy. 1(4), 566–589 (2012)

    Article  Google Scholar 

  48. Q. Zeng et al., Evaluation of the thermodynamic data of CH\(_{3}\)SiCl\(_{3}\) based on quantum chemistry calculations. J. Phys. Chem. Ref. Data 35(3), 1385–1390 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selgin Al.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al, S. Mechanical and electronic properties of perovskite hydrides LiCaH\(_{\mathrm {{3}}}\) and NaCaH\(_{\mathrm {{3}}}\) for hydrogen storage applications. Eur. Phys. J. B 94, 182 (2021). https://doi.org/10.1140/epjb/s10051-021-00195-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00195-8

Navigation