Skip to main content
Log in

Improving sample preparation to investigate lignin intensity of xylem at the cellular level by confocal Raman microspectroscopy of Populus tomentosa

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Confocal Raman microspectroscopy (CRM) is an important tool for analyzing the compositional distribution of cell walls in situ. In this study, we improved the sample preparation method using paraffin-embedded sections combined with hexane dewaxing to obtain high resolution Raman images. We determined that the cell wall components of fiber cells were different from those of ray cells and vessel cells in the xylem of Populus tomentosa. Acetyl bromide and CRM methods produced similar trends when the difference in lignin intensity in the xylem region was compared between transgenic PtrLac4 and wild-type P. tomentosa. However, CRM proved more useful to analyze the lignin distribution in each cell type and distinguished the detailed difference in lignin intensity at the cellular level. Thus, CRM proved to be a useful in situ method to rapidly analyze the spatial variation of lignin content in the xylem of woody plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Berthet S, Demont-Caulet N, Pollet B, Bidzinski P, Cezard L, Le Bris P et al (2011) Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell 23:1124–1137

    Article  CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  CAS  Google Scholar 

  • Burton RA, Gidley MJ, Fincher GB (2010) Heterogeneity in the chemistry, structure and function of plant cell walls. Nat Chem Biol 6:724–732

    Article  CAS  Google Scholar 

  • Darco A, Brancati N, Ferrara MA, Indolfi M, Frucci M, Sirleto L (2016) Subcellular chemical and morphological analysis by stimulated Raman scattering microscopy and image analysis techniques. Biomed Opt Express 7:1853–1864

    Article  CAS  Google Scholar 

  • De Bleye C, Sacre PY, Dumont E, Netchacovitch L, Chavez PF, Piel G, Lebrun P, Hubert P, Ziemons E (2014) Development of a quantitative approach using surface-enhanced Raman chemical imaging: first step for the determination of an impurity in a pharmaceutical model. J Pharm Biomed Anal 90:111–118

    Article  Google Scholar 

  • Evans CL, Xie XS (2008) Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu Rev Anal Chem 1:883–909

    Article  CAS  Google Scholar 

  • Faolain EO, Hunter MB, Byrne JM, Kelehan P, Lambkin HA, Byrne HJ, Lyng FM (2005) Raman spectroscopic evaluation of efficacy of current paraffin wax section dewaxing agents. J Histochem Cytochem 53:121–129

    Article  CAS  Google Scholar 

  • Ferreira BG, Teixeira CT, Isaias RM (2014) Efficiency of the polyethylene-glycol (PEG) embedding medium for plant histochemistry. J Histochem Cytochem 62:577–583

    Article  Google Scholar 

  • Gierlinger N, Schwanninger M (2006) Chemical imaging of poplar wood cell walls by confocal Raman microscopy. Plant Physiol 140:1246–1254

    Article  CAS  Google Scholar 

  • Gierlinger N, Sapei L, Paris O (2008) Insights into the chemical composition of equisetum hyemale by high resolution Raman imaging. Planta 227:969–980

    Article  CAS  Google Scholar 

  • Gierlinger N, Keplinger T, Harrington M (2012) Imaging of plant cell walls by confocal Raman microscopy. Nat Protoc 7:1694–1708

    Article  CAS  Google Scholar 

  • Gorzsas A (2017) Chemical imaging of xylem by Raman microspectroscopy. Methods Mol Biol 1544:133–178

    Article  Google Scholar 

  • Heiner Z, Zeise I, Elbaum R, Kneipp J (2018) Insight into plant cell wall chemistry and structure by combination of multiphoton microscopy with Raman imaging. J Biophotonics 11:e201700164

    Article  Google Scholar 

  • Hofte H, Voxeur A (2017) Plant cell walls. Curr Biol 27:R865–R870

    Article  CAS  Google Scholar 

  • Ji Z, Zhang X, Ling Z, Zhou X, Ramaswamy S, Xu F (2015) Visualization of Miscanthus x Giganteus cell wall deconstruction subjected to dilute acid pretreatment for enhanced enzymatic digestibility. Biotechnol Biofuels 8:103

    Article  Google Scholar 

  • Larsen KL, Barsberg S (2010) Theoretical and Raman spectroscopic studies of phenolic lignin model monomers. J Phys Chem B 114:8009–8021

    Article  CAS  Google Scholar 

  • Lelie DVD, Taghavi S, Mccorkle SM, Li LL, Malfatti SA, Monteleone D, Donohoe BS, Ding SY, Adney WS, Himmel ME (2012) The metagenome of an anaerobic microbial community decomposing poplar wood chips. PLoS ONE 7(5):e36740

    Article  Google Scholar 

  • Lise J, Serge B, Julien M (2011) Identification of laccases involved in lignin polymerization and strategies to deregulate their expression in order to modify lignin content in Arabidopsis and poplar. BMC Proc 5:O39

    Article  Google Scholar 

  • Littlejohn GR, Mansfield JC, Parker D (2015) In vivo chemical and structural analysis of plant cuticular waxes using stimulated Raman scattering microscopy. Plant Physiol 168:18–28

    Article  CAS  Google Scholar 

  • Liu Q, Luo L, Zheng L (2018) Lignins: biosynthesis and biological functions in plants. Int J Mol Sci 19:335

    Article  Google Scholar 

  • Loque D, Scheller HV, Pauly M (2015) Engineering of plant cell walls for enhanced biofuel production. Curr Opin Plant Biol 25:151–161

    Article  CAS  Google Scholar 

  • Ma J, Zhou X, Ma J, Ji Z, Zhang X, Xu F (2014) Raman microspectroscopy imaging study on topochemical correlation between lignin and hydroxycinnamic acids in Miscanthus sinensis. Microsc Microanal 20:956–963

    Article  CAS  Google Scholar 

  • Marion J, Le Bars R, Satiat-Jeunemaitre B, Boulogne C (2017) Optimizing CLEM protocols for plants cells: GMA embedding and cryosections as alternatives for preservation of GFP fluorescence in Arabidopsis roots. J Struct Biol 198:196–202

    Article  CAS  Google Scholar 

  • Meents MJ, Watanabe Y, Samuels AL (2018) The cell biology of secondary cell wall biosynthesis. Ann Bot 121:1107–1125

    Article  CAS  Google Scholar 

  • Murakami Y, Funada R, Sano Y, Ohtani J (1999) The differentiation of contact cells and isolation cells in the xylem ray parenchyma of Populus maximowiczii. Ann Bot 84:429–435

    Article  Google Scholar 

  • Nima ZA, Biswas A, Bayer IS, Hardcastle FD, Perry D, Ghosh A, Dervishi E, Biris AS (2014) Applications of surface-enhanced Raman scattering in advanced bio-medical technologies and diagnostics. Drug Metab Rev 46:155–175

    Article  Google Scholar 

  • Pohling C, Brackmann C, Duarte A, Buckup T, Enejder A, Motzkus M (2014) Chemical imaging of lignocellulosic biomass by CARS microscopy. J Biophotonics 7:126–134

    Article  CAS  Google Scholar 

  • Popper ZA, Ralet MC, Domozych DS (2014) Plant and algal cell walls: diversity and functionality. Ann Bot 114:1043–1048

    Article  CAS  Google Scholar 

  • Roeffaers MB, Zhang X, Freudiger CW, Saar BG, Van Ruijven M, Van Dalen G, Xiao C, Xie XS (2011) Label-free imaging of biomolecules in food products using stimulated Raman microscopy. J Biomed Opt 16:021118

    Article  Google Scholar 

  • Schuetz M, Smith R, Ellis B (2013) Xylem tissue specification, patterning, and differentiation mechanisms. J Exp Bot 64:11–31

    Article  CAS  Google Scholar 

  • Sergo V, Krafft C, Codrich D, Bonifacio A, Beleites C (2013) Raman spectroscopy and imaging: promising optical diagnostic tools in pediatrics. Curr Med Chem 20:2176–2187

    Article  Google Scholar 

  • Wen JL, Sun SL, Xue BL, Sun RC (2013) Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials (Basel) 6:359–391

    Article  Google Scholar 

  • Zeng Y, Saar BG, Friedrich MG, Chen F, Liu YS, Dixon RA, Himmel ME, Xie XS, Ding SY (2010) Imaging lignin-downregulated alfalfa using coherent anti-stokes Raman scattering microscopy. BioEnergy Res 3:272–277

    Article  Google Scholar 

  • Zhao Q, Dixon RA (2011) Transcriptional networks for lignin biosynthesis: more complex than we thought? Trends Plant Sci 16:227–233

    Article  CAS  Google Scholar 

  • Zhao Y, Lin S, Qiu Z, Cao D, Wen J, Deng X, Wang X, Lin J, Li X (2015) MicroRNA857 is involved in the regulation of secondary growth of vascular tissues in Arabidopsis. Plant Physiol 169:2539–2552

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Li.

Additional information

Corresponding editor: Yanbo Hu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: This work was funded by the Fundamental Research Funds for the Central Universities (Grant No. 2019ZY30) and National Natural Science Foundation of China (Grant No. 31971618, Grant No. 31570582).

The online version is available at http://www.springerlink.com.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Luo, M., Liu, Y. et al. Improving sample preparation to investigate lignin intensity of xylem at the cellular level by confocal Raman microspectroscopy of Populus tomentosa. J. For. Res. 32, 2135–2142 (2021). https://doi.org/10.1007/s11676-020-01244-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-020-01244-1

Keywords

Navigation