Skip to main content
Log in

Morphological and genetic differentiation in isolated populations of Mexican beech Fagus grandifolia subsp. mexicana

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Mexican beech [Fagus grandifolia subsp. mexicana (Martinez) A.E.Murray] is a subspecies endemic to the Sierra Madre Oriental Mountains and considered endangered due to the low density of its populations and high degree of habitat fragmentation and environmental specificity. Because its morphological and genetic variation is associated with its ability to adapt to changes in environmental conditions, the objective of this study was to determine whether phenotypic and genotypic variation exist, and it relationships with population reduction events. In four beech populations in the states of Hidalgo and Veracruz, we analyzed 11 morphological variables for leaves and 6 microsatellite markers. The morphological variables that to discriminate between populations were related to the size of the leaf, but a robust differentiation pattern was not found, given that independent groups of leaves were identified. The populations located closest to each other, had greater genetic variation and less genetic distance; populations in the extreme north and south had the lowest genetic variation. Genetic differentiation among populations was associated with reduction in population size. In the 3 localities in Hidalgo, recent bottlenecks were identified, and in Veracruz, an old bottleneck was found. Variation in leaf morphology and genetic structure of Mexican beech populations could be the result of a combination of various geographical, climate and ecological factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Álvarez-Zúñiga E, Sánchez-González A, Granados SD (2009) Analysis of leaf morphological variation in quercus laeta liebm. in Los Mármoles National Park, Hidalgo México. Rev Chapingo Ser Cie 15(2):87–93

    Google Scholar 

  • Barstow M. (2017) Fagus grandifolia. The IUCN Red List of Threatened Species 2017: e.T62004694A62004696. https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T62004694A62004696.en. Accessed 26 October 18.

  • Capdevielle-Vargas R, Estrella N, Menzel A (2015) Multiple-year assessment of phenological plasticity within a beech (Fagus sylvatica L.) stand in southern Germany. Agric For Meteorol 211–212:13–22. https://doi.org/10.1016/j.agrformet.2015.03.019

    Article  Google Scholar 

  • Carvalho SR, Luiz PJ, Xavier CR (2012) Morphological characterization of leaf, flower, fruit and seed traits among Brazilian Theobroma L. species. Genet Resour Crop Evol 59(3):327–345. https://doi.org/10.1007/s10722-011-9685-6

    Article  Google Scholar 

  • Ciocîrlan E (2014) Comparative morphological analyses in marginal beech populations. Bull Transilv Univ Braşov Ser II For Wood Ind Agric Food Eng 7(56):7–12

    Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144(4):2001–2014

    Article  CAS  Google Scholar 

  • Cregan PB, Quigley CV (1997) Simple sequence repeat DNA marker analysis. In: Caetano-Anollés G, Gresshoff PM (eds) DNA markers: protocols, applications and overviews. J. Wiley and Sons, New York, pp 173–185

    Google Scholar 

  • Denk T, Grimm GW, Hemleben V (2005) Patterns of molecular and morphological differentiation in Fagus (Fagaceae) phylogenetic implications. Am J Bot 92(6): 1006–1016. https:// doi.org/https://doi.org/10.3732/ajb.92.6.1006.

  • Dolnicki A, Kraj W (2001) Leaf morphology and the dynamics of frost-hardiness of shoots in two phenological forms of European beech (Fagus sylvaticaL.) from southern Poland. EJPAU 4(2):1

    Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19(1):11–15

    Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. https://doi.org/10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

    Article  CAS  Google Scholar 

  • Fang J, Lechowicz MJ (2006) Climatic limits for the present distribution of beech (Fagus L) species in the world. J Biogeogr 33(10):1804–1819. https://doi.org/10.1111/j.1365-2699.2006.01533.x

    Article  Google Scholar 

  • Frank A, Pluess AR, Howe GT, Sperisen C, Heiri C (2017) Quantitative genetic differentiation and phenotypic plasticity of European beech in a heterogeneous landscape: indications for past climate adaptation. Perspect Plant Ecol Syst 26:1–13. https://doi.org/10.1016/j.ppees.2017.02.001

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2012) Introduction to conservation genetics. Cambridge University Press, Cambridge UK, pp 175–196

    Google Scholar 

  • Galván-Hernández DM, Lozada-García JA, Flores-Estévez N, Galindo-González J, Vázquez-Torres SM (2015) Variation and genetic structure in Platanus mexicana (Platanaceae) along riparian altitudinal gradient. Int J Mol Sci 16(1):2066–2077. https://doi.org/10.3390/ijms16012066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  • Hatziskakis S, Tsiripidis I, Papageorgiou AC (2011) Leaf morphological variation in beech (Fagus sylvatica L.) populations in Greece and its relation to their post-glacial origin. Bot J Linn Soc 165(4):422–436. https://doi.org/10.1111/j.1095-8339.2011.01124.x

    Article  Google Scholar 

  • Housset JM, Carcaillet C, Girardin MP, Xu H, Tremblay F, Bergeron Y (2016) In situ comparison of tree-ring responses to climate and population genetics: the need to control for local climate and site variables. Front Ecol Evol 4:123. https://doi.org/10.3389/fevo.2016.00123

    Article  Google Scholar 

  • Houston DB, Houston DR (1994) Variation in American beech (Fagus grandifolia Ehrh): Isozyme analysis of genetic structure in selected stands. Silvae Genet 43(5–6):277–284

    Google Scholar 

  • Iglesias-Andreu LG, Octavio-Aguilar P, Vovides AP, Meerow AW, de Cáceres-González FFN, Galván-Hernández DM (2017) Extinction risk of Zamia inermis (Zamiaceae): a genetic approach for the conservation of its single natural population. Int J Plant Sci 178(9):715–723. https://doi.org/10.1086/694080

    Article  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23(14):1801–1806. https://doi.org/10.1093/bioinformatics/btm233

    Article  CAS  PubMed  Google Scholar 

  • Kaufman L, Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis. John Wiley & Sons, New York, pp 199–252

    Book  Google Scholar 

  • Kitamura K, Kawano S (2001) Regional differentiation in genetic components for the American beech, Fagus grandifolia Ehrh., in relation to geological history and mode of reproduction. J Plant Res 114(1115):353–368. https://doi.org/10.1007/PL00013997

    Article  CAS  Google Scholar 

  • Kitamura K, Takasu H, Hagiwara S, Homma K, O′neill J, Whigham DF, Kawano S (2008) Demographic genetics of American beech (Fagus grandifolia Ehrh.) IV. development of genetic variability and gene flow during succession in a coastal plain forest in Maryland. Plant Sp Biol 23:159–173. https://doi.org/10.1111/j.1442-1984.2008.00228.x

    Article  Google Scholar 

  • Koch JL, Carey DW, Mason ME (2010) Use of microsatellite markers in an American beech (Fagus grandifolia) population and paternity testing. Silvae Genet 59(2):62–68. https://doi.org/10.1515/sg-2010-0008

    Article  Google Scholar 

  • Lazar I, Lazar I (2010) Gel Analyzer 2010a: Freeware 1D gel electrophoresis image analysis software. Available online: https://www.gelanalyzer.com Accessed 10 October 18.

  • Li-Ping J, Huei-Chuan S, Yu-Chung C (2012) Microsatellite primers for the endangered beech tree, Fagus hayatae (Fagaceae). Am J Bot. https://doi.org/10.3732/ajb.1200118

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27(2):209–220

    CAS  PubMed  Google Scholar 

  • Miller MP (1997) Tools for population genetic analyses (TFPGA) version 1.3. A Windows program for the analysis of allozyme and molecular population genetic data. Logan. UT, USA: Utah State University, pp 17–23

  • Montiel-Oscura D, Ramírez-Herrera C, Ángeles-Pérez G, López-Upton J, Antonio-López P (2013) Allozyme variation and population size of haya mexicana (Fagus grandifolia subsp. mexicana) in the Sierra Madre Oriental. Rev Fitotec Mex 36(4):413–420

    Google Scholar 

  • Murtagh F, Legendre P (2014) Ward´s hierarchical agglomerative clustering method: which algorithms implement ward’s criterion? J Classif 31(3):274–295. https://doi.org/10.1007/s00357-014-9161-z

    Article  Google Scholar 

  • Octavio-Aguilar P, Iglesias-Andreu LG, de Cáceres-González FFN, Galván-Hernández DM (2017) Fine-scale of Zamia furfuracea: variation with life-cycle stages. Int J Plant Sci 178(1):57–66. https://doi.org/10.1086/689200

    Article  Google Scholar 

  • Ortiz-Quijano AB, Sánchez-González A, López-Mata L, Villanueva-Díaz J (2016) Population structure of Fagus grandifolia subsp mexicana in the cloud forest of Hidalgo state, Mexico. Bot Sci 94(3):483–497. https://doi.org/10.17129/botsci.515

    Article  Google Scholar 

  • Ortiz-Quijano AB, Cuevas-Cardona C, Villanueva-Díaz J, López-Mata L, Sánchez-González A (2018) Dendrochronological reconstruction of environmental history of Fagus grandifolia subsp. mexicana in Mexico. Tree Ring Res 74(1):108–119. https://doi.org/10.3959/1536-1098-74.1.108

    Article  Google Scholar 

  • Pastorelli R, Smulders MJM, Van′t Westende WPC, Vosman B, Giannini R, Vettori C, Vendtamin GG (2003) Characterization of microsatellite markers in Fagus sylvatica L. and Fagus orientalis lipsky. Mol Ecol Resour 3(1):76–78. https://doi.org/10.1046/j.1471-8286.2003.00355.x

    Article  CAS  Google Scholar 

  • Peakall ROD, Smouse PE (2006) GENALEX 6: genetic analysis in excel. population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  • Pejic I, Ajmone-Marsan P, Morgante M, Kozumplick V, Castiglioni P, Taramino G, Moto M (1998) Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs. Theor Appl Genet 97(8):1248–1255. https://doi.org/10.1007/s001220051017

    Article  CAS  Google Scholar 

  • Pigliucci M (2001) Phenotypic plasticity: beyond nature and nurture. The John Hopkins University Press, Baltimore, Maryland, pp 1–12

    Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) Bottleneck: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90(4):502–503. https://doi.org/10.1093/jhered/90.4.502

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    Article  CAS  Google Scholar 

  • Rodríguez-Ramírez ECh, Sánchez-González A, Ángeles-Pérez G (2013) Current distribution and coverage of Mexican beech forest Fagus grandifolia subsp. mexicana in Mexico. Endangered Species Res 20(3):205–216. https://doi.org/10.3354/esr00498

    Article  Google Scholar 

  • Rodríguez-Ramírez ECh, Sánchez-González A, Ángeles-Pérez G (2018) Relationship between vegetation structure and microenvironment in Fagus grandifolia subsp mexicana forest relicts in Mexico. J Plant Ecol 11(2):237–247. https://doi.org/10.1093/jpe/rtw138

    Article  Google Scholar 

  • Rohlf JF (2005) Tps Dig, version 2.04. Department of Ecology and Evolution, New York: State University of New York at Stony Brook. https://tpsdig2.software.informer.com/

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4(1):137–138. https://doi.org/10.1046/j.1471-8286.2003.00566.x

    Article  Google Scholar 

  • Rowden A, Robertson A, Allnutt T, Heredia S, Williams-Linera G, Newton AC (2004) Conservation genetics of Mexican beech. Fagus grandifolia var mexicana Conserv Gen 5(4):475–484. https://doi.org/10.1023/B:COGE.0000041028.02423.c0

    Article  CAS  Google Scholar 

  • Schlichting CD (2004) The role of phenotypic plasticity in diversification. In: De Witt TJ, Scheiner SM (eds) Phenotypic plasticity: functional and conceptual approaches. Oxford University Press, Oxford, pp 191–200

    Google Scholar 

  • SEMARNAT, Ministry of the Environment and Natural Resources (2010) Official MEXICAN STANDARD NOM-059-SEMARNAT-2010, environmental protection –Mexico’s native species of wild flora and fauna–risk categories and specifications for inclusion, exclusion or change–List of species at risk. Official Gazette of the Federation. Mexico, Ministry of the Interior (SEGOB), pp 62–63

    Google Scholar 

  • Skosyrev VS, Vasil′eva GV, Lomaeva MG, Malachova LV, Antipova VN, Bezlepkin VG (2013) Specialized software product for comparative analysis of multicomponent DNA fingerprints. Russ J Genet 49(4):464–469. https://doi.org/10.1134/S1022795413040145

    Article  CAS  Google Scholar 

  • Slatkin M, Barton NH (1989) A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43(7):1349–1368. https://doi.org/10.1111/j.1558-5646.1989.tb02587.x

    Article  PubMed  Google Scholar 

  • StatSoft (2014) STATISTICA (data analysis software system), Version 10. https://www.statsoft.com.

  • Vargas-Rodríguez YL, Platt WJ, Vázquez-García JA, Boquin G (2010) Selecting relict montane cloud forests for conservation priorities: the case of western Mexico. Nat Areas J 30(2):156–173. https://doi.org/10.3375/043.030.0204

    Article  Google Scholar 

  • Via S, Lande R (1985) Genotype-environment interaction and the evolution of the phenotypic plasticity. Evolution 39(3):505–522. https://doi.org/10.2307/2408649

    Article  PubMed  Google Scholar 

  • Williams-Linera G, Rowden A, Newton AC (2003) Distribution and stand characteristics of relict populations of Mexican beech (Fagus grandifolia var. mexicana). Biol Conserv 109(1):27–36. https://doi.org/10.1016/S0006-3207(02)00129-5

    Article  Google Scholar 

  • Winn AA, Gross KL (1993) Latitudinal variation in seed weight and flower number in Prunella vulgaris. Oecologia 93(1):55–62

    Article  Google Scholar 

Download references

Acknowledgements

This study received financial support from the National Council of Science and Technology, Basic Science Project “Effect of climate change on relict tree populations: integrating dendrochronology and population genetics”, CB-2016/284484; from Project INFR-252807 for the genetic analysis, and National Council of Science and Technology, postdoctoral grant 316763 “Forest genetic stock of the state of Hidalgo: Studies on Cedrela odorata, Magnolia dealbata and Fagus grandifolia” for D.M.G.-H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Sánchez-González.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: This work was supported financially by the National Council of Science and Technology, Basic Science Project “Effect of climate change on relict tree populations: integrating dendrochronology and population genetics”, CB-2016/284,484; by the Project INFR-252807 for the genetic analysis, and National Council of Science and Technology, postdoctoral grant 316,763.

The online version is available at http://www.springerlink.com.

Corresponding editor: Lei Yu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galván-Hernández, D.M., Octavio-Aguilar, P., Lazcano-Cruz, L. et al. Morphological and genetic differentiation in isolated populations of Mexican beech Fagus grandifolia subsp. mexicana. J. For. Res. 32, 2169–2179 (2021). https://doi.org/10.1007/s11676-020-01247-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-020-01247-y

Keywords

Navigation