Skip to main content
Log in

Microstructure and Red Luminescence of ZnO Nanoparticles/Nanofibers Synthesized by Electrospinning Followed by Thermal Annealing

  • Published:
Journal of Applied Spectroscopy Aims and scope

This paper reports the red visible luminescence of ZnO nanofibers synthesized by electrospinning followed by thermal annealing. The ZnO nanofibers were prepared by electrospinning of the precursor mixture of zinc acetate/polyvinylpyrrolidone (PVP) by using different PVP concentrations, while thermal annealing was kept at 600oC. The ZnO nanofiber diameter was dependent on the PVP concentrations, which increased as PVP concentrations increased. Thermal annealing induced significant changes in ZnO nanofibers, which formed ZnO nanoparticle/nanofiber structures as a function of PVP concentrations. The ZnO nanofibers synthesized with PVP concentration of 20% induced homogeneous distribution of ZnO nanoparticles with highly visible luminescence intensities centering at ~650 nm. Results indicated that the use of electrospinning followed by thermal annealing could be an important method for the synthesis of ZnO nanoparticle/nanofiber structures, which could be used in advanced engineering such as optoelectronics and sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Z. R. Dai, Z. W. Pan, and Z. L. Wang, Adv. Funct. Mater., 13, 9–24 (2013).

    Article  Google Scholar 

  2. J. Lian, Z. Ding, F. L. Kwong, and D. H. L. Ng, Cryst. Eng. Commun., 13, 4820–4822 (2011).

    Article  Google Scholar 

  3. Q. Tang, W. Zhou, J. Shen, W. Zhang, L. Kong, and Y. Qian, Chem. Commun., 10, 712–713 (2004).

    Article  Google Scholar 

  4. M. McCune, W. Zhang, and Y. Deng, Nano Lett., 12, 3656–3662 (2012).

    Article  ADS  Google Scholar 

  5. D. Yuvaraj, K. Narasimha Rao, and K. Barai, Solid State Commun., 149, 349–351 (2009).

    Article  ADS  Google Scholar 

  6. W. Wang, B. Zeng, J. Yang, B. Poudel, J. Huang, M. J. Naughton, and Z. Ren, Adv. Mater., 18, 3275–3278 (2006).

    Article  Google Scholar 

  7. V. H. Pham, V. T. Kien, P. D. Tam, and P. T. Huy, Mater. Sci. Eng: B, 209, 17–22 (2016).

  8. S. Cho, J. Ma, Y. Kim, Y. Sun, G. K. L. Wong, and J. B. Ketterson, Appl. Phys. Lett., 75, 2761 (1999).

    Article  ADS  Google Scholar 

  9. A. Umar, B. K. Kim, J. J. Kim, and Y. B. Hahn, Nanotechnology, 18, 175606 (2007).

    Article  ADS  Google Scholar 

  10. S. S. Warule, N. S. Chaudhari, B. B. Kale, and M. A. More, Cryst. Eng. Commun., 11, 2776–2783 (2009).

    Article  Google Scholar 

  11. V. Kumar, V. Kumar, S. Som, A. Yousif, N. Singh, O. M. Ntwaeaborwa, A. Kapoor, and H. C. Swart, J. Colloid Interf. Sci., 428, 8–15 (2014).

    Article  ADS  Google Scholar 

  12. H. Q. Wang, G. Z. Wang, L. C. Jia, C. J. Tang, and G. H. Li, J. Phys. D: Appl. Phys., 40, 6549–6553 (2007).

    Article  ADS  Google Scholar 

  13. D. Y. Jiang, J. X. Zhao, M. Zhao, Q. C. Liang, S. Gao, J. M. Qin, Y. J. Zhao, and A. Li, J. Alloys Compd., 532, 31–33 (2012).

    Article  Google Scholar 

  14. D. H. Fan, W. Z. Shen, M. J. Zheng, Y. F. Zhu, and J. J. Lu, J. Phys. Chem. C, 111, 9116–9121 (2007).

    Article  Google Scholar 

  15. R. Raji and K.G. Gopchandran, J. Sci.: Adv. Mater. Devic., 2, 51–58 (2017).

    Google Scholar 

  16. A. B. Djurišić, Y. H. Leung, K. H. Tam, L. Ding, W. K. Ge, H. Y. Chen, and S. Gwo, Appl. Phys. Lett., 88, 103107 (2006).

    Article  ADS  Google Scholar 

  17. M. Kitsara, O. Agbulut, D. Kontziampasis, Y. Chen, and P. Menasché, Acta Biomater., 48, 20–40 (2017).

    Article  Google Scholar 

  18. Travis J. Sill and Horst A. von Recum, Biomaterials, 29, 1989–2006 (2008).

  19. C. Lai, X. Wang, Y. Zhao, H. Fong, and Z. Zhu, RSC Adv., 3, 6640–6645 (2013).

    Article  ADS  Google Scholar 

  20. E. Ghafari, Y. Feng, Y. Liu, I. Ferguson, and N. Lu, Composites Part B, 116, 40–45 (2017).

    Article  Google Scholar 

  21. H. Wu and W. Pan, J. Am. Ceram. Soc., 89, 699–701 (2006).

    Article  Google Scholar 

  22. J. Y. Park and S. S. Kim, J. Am. Ceram. Soc., 92, 1691–1694 (2009).

    Article  Google Scholar 

  23. D. Y. Leea, J. E. Choa, N. I. Chob, M. H. Leec, S. S. J. Leed, and B. Y. Kim, Thin Solid Films, 517, 1262–1267 (2008).

    Article  ADS  Google Scholar 

  24. A. Baez-Rodríguez, L. Zamora-Peredo, M. G. Soriano-Rosales, J. Hernandez-Torres, L. García-González, R. M. Calderón-Olvera, M. García-Hipólito, J. Guzmán-Mendoza, and C. Falcony, J. Lumin., 218 , 116830 (2020).

    Article  Google Scholar 

  25. J. Zhou, K. Nomenyo, C. C. Cesar, A. Lusson, A. Schwartzberg, C. C. Yen, W. Y. Woon, and G. Leronde, Sci. Rep., 10, 4237 (2020).

    Article  ADS  Google Scholar 

  26. Y. Kumar, A. K. Rana, P. Bhojane, M. Pusty, V. Bagwe, S. Sen, and P. M. Shirage, Mater. Res. Express, 2, 105017 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Q. Tuan or V.-H. Pham.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 4, p. 665, July–August, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huan, P.V., Thong, N.D., Thuy, V.T.P. et al. Microstructure and Red Luminescence of ZnO Nanoparticles/Nanofibers Synthesized by Electrospinning Followed by Thermal Annealing. J Appl Spectrosc 88, 870–874 (2021). https://doi.org/10.1007/s10812-021-01252-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01252-x

Keywords

Navigation