Skip to main content

Advertisement

Log in

Energy Levels, Lifetimes, and Radiative Data of Xe XXIV

  • Published:
Journal of Applied Spectroscopy Aims and scope

The multi-configuration Dirac–Hartree–Fock method is employed to calculate the energy levels, wavelengths, transition probabilities, and line strengths for electric dipole allowed (E1) and forbidden (M1, E2, M2) lines for the 4s24p and 4s4p2 configurations of Xe XXIV. From our radiative decay probabilities, we have also derived the radiative lifetimes of 10 fine-structure energy levels. The valence–valence (VV) and core–valence (CV) correlation effects, Breit interactions, as well as quantum electrodynamics (QED) effects are estimated in the subsequent relativistic configuration interaction (CI) calculations. The present results are compared with the experimental data and with the values from other calculations. In this paper, we predict new data for several radiative data where no other theoretical and/or experimental results are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Gilaspy, J. Phys. B: At. Mol. Opt. Phys., 34, R93 (2001).

    Article  ADS  Google Scholar 

  2. D. A. Liedahl, in: ASP Conference Series, 247, Eds. G. Ferland and D. W. Savin, San Francisco, 417 (2001).

  3. P. Quinet, É. Biémont, P. Palmeri, and E.Träbert, At. Data Nucl. Data Tables, 93, 167 (2007).

    Article  ADS  Google Scholar 

  4. É. Biémont, P. Qninet, and J. Quant, Spectrosc. Radiat. Transf., 44, 233 (1990).

    Article  ADS  Google Scholar 

  5. M. A. Ali, Phys. Scr., 55, 159 (1997).

    Article  ADS  Google Scholar 

  6. U. Litzén and X. T. Zeng, Phys. Scr., 43, 262 (1991).

    Article  ADS  Google Scholar 

  7. U. Litzén and J. Reader, Phys. Scr., 39, 73 (1989).

    Article  ADS  Google Scholar 

  8. C. Breton, C. DeMichelis, W. Hecq, M. Mattioli, J. Ramette, B. Saoutic, C. Bauche-Arnoult, J. Bauche, and J. F. Wyart, Phys. Scr., 37, 33 (1988).

    Article  ADS  Google Scholar 

  9. E. Träbert, Nucl. Instrum. Methods B, 43, 362 (1989).

    Article  ADS  Google Scholar 

  10. E.Träbert, G. Moller, P. H. Heckmann, A. E. Livingston, and J. H. Blanke, Phys. Scr., 42, 323 (1990).

    Article  ADS  Google Scholar 

  11. K. B. Fournier, W. H. Goldstein, A. Osterheld, M. Finkenthal, S. Lippmann, L. K. Huang, H. W. Moos, and N. Spector, Phys. Rev. A, 50, 2248 (1994).

    Article  ADS  Google Scholar 

  12. S. B. Utter, P. Beiersdorfer, and E. Träbert, Can. J. Phys., 80, 1503 (2002).

    Article  ADS  Google Scholar 

  13. T. Pütterich, R. Neu, C. Biedermann, and R. Radtke, ASDEX Upgrada Team, J. Phys. B: At. Mol. Opt. Phys., 38, 3071 (2005).

    Article  ADS  Google Scholar 

  14. Y. Ralchenko, J. Reader, J. M. Pomeroy, J. N. Tan, and J. D. Gillaspy, J. Phys. B: At. Mol. Opt. Phys., 40, 3861 (2007).

    Article  ADS  Google Scholar 

  15. E. Träbert, P. Beiersdorfer, K. B. Fournier, and M. H. Chen, Can. J. Phys. B: At. Mol. Opt. Phys., 83, 829 (2005).

    Article  ADS  Google Scholar 

  16. E. Träbert, P. Beiersdorfer, K. B. Fournier, S. B. Utter, and K. L. Wong, Can. J. Phys., 79, 153 (2001).

    Article  ADS  Google Scholar 

  17. C. Biedermann, R. Radtke, G. Fußmann, J. L. Schwob, and P. Mandelbaum, Nucl. Instrum. Methods B, 235, 126 (2005).

    Article  ADS  Google Scholar 

  18. K. B. Fournier, At. Data Nucl. Data Tables, 68, 1 (1998).

    Article  ADS  Google Scholar 

  19. U. I. Safronova, T. E. Cowan, and M. S. Safronova, Phys. Lett. A, 348, 293 (2006).

    Article  ADS  Google Scholar 

  20. F. Hu, J. Yang, C. Wang, L. Jing, S. Chen, G. Jiang, H. Liu, and L. Hao, Phys. Rev. A, 84, 042506 (2011).

    Article  ADS  Google Scholar 

  21. F. El-Sayed, J. Appl. Spectrosc., 82, 3 (2015).

    Google Scholar 

  22. P. Quinet, É. Biémont, P. Palmeri, and E. Träbert, At. Data Nucl. Data Tables, 93, 167 (2007).

    Article  ADS  Google Scholar 

  23. J. P. Desclaux, Comput. Phys. Commun., 9, 31 (1975).

    Article  ADS  Google Scholar 

  24. J. P. Desclaux and P. Indelicato, MCDFGME, a Multi-Configuration Dirac Fock and General Matrix Elements Program, release 2005, http://dirac.spectro.jussieu.fr/mcdf.

  25. P. Å. Malmqvist, Int. J. Quantum Chem., 30, 479 (1986).

    Article  Google Scholar 

  26. J. Olsen, M. Godefroid, P. Jönsson, P. Å. Malmqvist, and C. Froese Fischer, Phys. Rev. E, 52, 4499 (1995).

    Article  ADS  Google Scholar 

  27. L. H. Hao, G. Jiang, and H. J. Hou, Phys. Rev. A, 81, 022502 (2010).

    Article  ADS  Google Scholar 

  28. L. J. Curtis, Phys. Rev. A, 35, 2089 (1987).

    Article  ADS  Google Scholar 

  29. É. Biémont and J. E. Hansen, Nucl. Instrum. Methods B, 23, 274 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. H. Hao.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 4, p. 666, July–August, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, X.M., Hao, L.H. & Liu, J.J. Energy Levels, Lifetimes, and Radiative Data of Xe XXIV. J Appl Spectrosc 88, 875–881 (2021). https://doi.org/10.1007/s10812-021-01253-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01253-w

Keywords

Navigation