Skip to main content

Advertisement

Log in

Gα13 Contributes to LPS-Induced Morphological Alterations and Affects Migration of Microglia

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Microglia are the resident immune cells of the CNS that are activated in response to a variety of stimuli. This phenotypical change is aimed to maintain the local homeostasis, also by containing the insults and repair the damages. All these processes are tightly regulated and coordinated and a failure in restoring homeostasis by microglia can result in the development of neuroinflammation that can facilitate the progression of pathological conditions. Indeed, chronic microglia activation is commonly recognized as a hallmark of many neurological disorders, especially at an early stage. Many complex pathways, including cytoskeletal remodeling, are involved in the control of the microglial phenotypical and morphological changes that occur during activation. In this work, we focused on the small GTPase Gα13 and its role at the crossroad between RhoA and Rac1 signaling when microglia is exposed to pro-inflammatory stimulation. We propose the direct involvement of Gα13 in the cytoskeletal rearrangements mediated by FAK, LIMK/cofilin, and Rac1 during microglia activation. In fact, we show that Gα13 knockdown significantly inhibited LPS-induced microglial cell activation, in terms of both changes in morphology and migration, through the modulation of FAK and one of its downstream effectors, Rac1. In conclusion, we propose Gα13 as a critical factor in the regulation of morphological and functional properties of microglia during activation, which might become a target of intervention for the control of microglia inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Material

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Code Availability

Not applicable.

References

  1. Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145. https://doi.org/10.1146/annurev.immunol.021908.132528

    Article  CAS  PubMed  Google Scholar 

  2. Shabab T, Khanabdali R, Moghadamtousi SZ et al (2017) Neuroinflammation pathways: a general review. Int J Neurosci 127:624–633. https://doi.org/10.1080/00207454.2016.1212854

    Article  CAS  PubMed  Google Scholar 

  3. Nimmerjahn A (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318. https://doi.org/10.1126/science.1110647

    Article  CAS  PubMed  Google Scholar 

  4. Rivest S (2009) Regulation of innate immune responses in the brain. Nat Rev Immunol 9:429–439. https://doi.org/10.1038/nri2565

    Article  CAS  PubMed  Google Scholar 

  5. Streit WJ (2002) Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40:133–139. https://doi.org/10.1002/glia.10154

    Article  PubMed  Google Scholar 

  6. Kim SU, de Vellis J (2005) Microglia in health and disease. J Neurosci Res 81:302–313. https://doi.org/10.1002/jnr.20562

    Article  CAS  PubMed  Google Scholar 

  7. Streit WJ, Graeber MB, Kreutzberg GW (1989) Peripheral nerve lesion produces increased levels of major histocompatibility complex antigens in the central nervous system. J Neuroimmunol 21:117–123. https://doi.org/10.1016/0165-5728(89)90167-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Town T, Nikolic V, Tan J (2005) The microglial “activation” continuum: from innate to adaptive responses. J Neuroinflammation 2:24. https://doi.org/10.1186/1742-2094-2-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hanisch U-K, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394. https://doi.org/10.1038/nn1997

    Article  CAS  PubMed  Google Scholar 

  10. Franco-Bocanegra McAuley, Nicoll B (2019) Molecular mechanisms of microglial motility: changes in ageing and Alzheimer’s disease. Cells 8:639. https://doi.org/10.3390/cells8060639

    Article  CAS  PubMed Central  Google Scholar 

  11. Lavin Y, Winter D, Blecher-Gonen R et al (2014) Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159:1312–1326. https://doi.org/10.1016/j.cell.2014.11.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang Y, Chen K, Sloan SA et al (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34:11929–11947. https://doi.org/10.1523/JNEUROSCI.1860-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Holtman IR, Noback M, Bijlsma M et al (2015) Glia Open Access Database (GOAD): a comprehensive gene expression encyclopedia of glia cells in health and disease: Glia Open Access Database (GOAD). Glia 63:1495–1506. https://doi.org/10.1002/glia.22810

    Article  PubMed  Google Scholar 

  14. Strathmann M, Simon MI (1990) G protein diversity: a distinct class of alpha subunits is present in vertebrates and invertebrates. Proc Natl Acad Sci 87:9113–9117. https://doi.org/10.1073/pnas.87.23.9113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kelly P, Casey PJ, Meigs TE (2007) Biologic Functions of the G12 subfamily of heterotrimeric G proteins: growth, migration, and metastasis . Biochemistry 46:6677–6687. https://doi.org/10.1021/bi700235f

    Article  CAS  PubMed  Google Scholar 

  16. Dhanasekaran N, Dermott J (1996) Signaling by the G class of G proteins. Cell Signal 8:235–245. https://doi.org/10.1016/0898-6568(96)00048-4

    Article  CAS  PubMed  Google Scholar 

  17. Suzuki N, Hajicek N, Kozasa T (2009) Regulation and physiological functions of G12/13-mediated signaling pathways. Neurosignals 17:55–70. https://doi.org/10.1159/000186690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chan AM, Fleming TP, McGovern ES et al (1993) Expression cDNA cloning of a transforming gene encoding the wild-type G alpha 12 gene product. Mol Cell Biol 13:762–768. https://doi.org/10.1128/MCB.13.2.762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu N, Bradley L, Ambdukar I, Gutkind JS (1993) A mutant alpha subunit of G12 potentiates the eicosanoid pathway and is highly oncogenic in NIH 3T3 cells. Proc Natl Acad Sci 90:6741–6745. https://doi.org/10.1073/pnas.90.14.6741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gu JL, Muller S, Mancino V et al (2002) Interaction of G 12 with G 13 and G q signaling pathways. Proc Natl Acad Sci 99:9352–9357. https://doi.org/10.1073/pnas.102291599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Offermanns S (1997) Vascular system defects and impaired cell chemokinesis as a result of Galpha 13 deficiency. Science 275:533–536. https://doi.org/10.1126/science.275.5299.533

    Article  CAS  PubMed  Google Scholar 

  22. Moers A, Nieswandt B, Massberg S et al (2003) G13 is an essential mediator of platelet activation in hemostasis and thrombosis. Nat Med 9:1418–1422. https://doi.org/10.1038/nm943

    Article  CAS  PubMed  Google Scholar 

  23. Kurose H (2003) Gα12 and Gα13 as key regulatory mediator in signal transduction. Life Sci 74:155–161. https://doi.org/10.1016/j.lfs.2003.09.003

    Article  CAS  PubMed  Google Scholar 

  24. Shen B, Delaney MK, Du X (2012) Inside-out, outside-in, and inside–outside-in: G protein signaling in integrin-mediated cell adhesion, spreading, and retraction. Curr Opin Cell Biol 24:600–606. https://doi.org/10.1016/j.ceb.2012.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Buhl AM, Johnson NL, Dhanasekaran N, Johnson GL (1995) Gα12 and Gα13 stimulate Rho-dependent stress fiber formation and focal adhesion assembly. J Biol Chem 270:24631–24634. https://doi.org/10.1074/jbc.270.42.24631

    Article  CAS  PubMed  Google Scholar 

  26. Kozasa T (1998) p115 RhoGEF, a GTPase activating protein for G12 and G13. Science 280:2109–2111. https://doi.org/10.1126/science.280.5372.2109

    Article  CAS  PubMed  Google Scholar 

  27. Hart MJ (1998) Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by G13. Science 280:2112–2114. https://doi.org/10.1126/science.280.5372.2112

    Article  CAS  PubMed  Google Scholar 

  28. Wang D, Tan Y, Kreitzer GE et al (2006) G proteins G12 and G13 control the dynamic turnover of growth factor-induced dorsal ruffles. J Biol Chem 281:32660–32667. https://doi.org/10.1074/jbc.M604588200

    Article  CAS  PubMed  Google Scholar 

  29. Shan D, Chen L, Wang D et al (2006) The G protein Gα13 is required for growth factor-induced cell migration. Dev Cell 10:707–718. https://doi.org/10.1016/j.devcel.2006.03.014

    Article  CAS  PubMed  Google Scholar 

  30. Shen B, Estevez B, Xu Z et al (2015) The interaction of Gα 13 with integrin β1 mediates cell migration by dynamic regulation of RhoA. MBoC 26:3658–3670. https://doi.org/10.1091/mbc.E15-05-0274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gong H, Shen B, Flevaris P et al (2010) G protein subunit G 13 binds to integrin IIb 3 and mediates integrin “outside-in” signaling. Science 327:340–343. https://doi.org/10.1126/science.1174779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vaiskunaite R, Adarichev V, Furthmayr H et al (2000) Conformational activation of radixin by G13 protein α subunit. J Biol Chem 275:26206–26212. https://doi.org/10.1074/jbc.M001863200

    Article  CAS  PubMed  Google Scholar 

  33. Radhika V, Onesime D, Ha JH, Dhanasekaran N (2004) Gα13 stimulates cell migration through cortactin-interacting protein Hax-1. J Biol Chem 279:49406–49413. https://doi.org/10.1074/jbc.M408836200

    Article  CAS  PubMed  Google Scholar 

  34. Meigs TE, Fedor-Chaiken M, Kaplan DD et al (2002) Gα12 and Gα13 negatively regulate the adhesive functions of cadherin. J Biol Chem 277:24594–24600. https://doi.org/10.1074/jbc.M201984200

    Article  CAS  PubMed  Google Scholar 

  35. Lin F, Chen S, Sepich DS et al (2009) Gα12/13 regulate epiboly by inhibiting E-cadherin activity and modulating the actin cytoskeleton. J Cell Biol 184:909–921. https://doi.org/10.1083/jcb.200805148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Syrovatkina V, Huang X (2019) Signaling mechanisms and physiological functions of G-protein Gα 13 in blood vessel formation, bone homeostasis, and cancer. Protein Sci 28:305–312. https://doi.org/10.1002/pro.3531

    Article  CAS  PubMed  Google Scholar 

  37. McCarthy KD, De Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85:890–902. https://doi.org/10.1083/jcb.85.3.890

    Article  CAS  PubMed  Google Scholar 

  38. Consonni A, Morara S, Codazzi F et al (2011) Inhibition of lipopolysaccharide-induced microglia activation by calcitonin gene related peptide and adrenomedullin. Mol Cell Neurosci 48:151–160. https://doi.org/10.1016/j.mcn.2011.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Burbelo PD, Drechsel D, Hall A (1995) A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac GTPases. J Biol Chem 270:29071–29074. https://doi.org/10.1074/jbc.270.49.29071

    Article  CAS  PubMed  Google Scholar 

  40. Fichter CD, Gudernatsch V, Przypadlo CM et al (2014) ErbB targeting inhibitors repress cell migration of esophageal squamous cell carcinoma and adenocarcinoma cells by distinct signaling pathways. J Mol Med 92:1209–1223. https://doi.org/10.1007/s00109-014-1187-5

    Article  CAS  PubMed  Google Scholar 

  41. Gujral TS, Chan M, Peshkin L et al (2014) A noncanonical Frizzled2 pathway regulates epithelial-mesenchymal transition and metastasis. Cell 159:844–856. https://doi.org/10.1016/j.cell.2014.10.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Matuszak J, Lutz B, Sekita A et al (2018) Drug delivery to atherosclerotic plaques using superparamagnetic iron oxide nanoparticles. IJN 13:8443–8460. https://doi.org/10.2147/IJN.S179273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pontier-Bres R, Prodon F, Munro P et al (2012) Modification of Salmonella Typhimurium Motility by the probiotic yeast strain Saccharomyces boulardii. PLoS ONE 7:e33796. https://doi.org/10.1371/journal.pone.0033796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Menegon A, Verderio C, Leoni C et al (2002) Spatial and temporal regulation of Ca 2+ /calmodulin-dependent protein kinase II activity in developing neurons. J Neurosci 22:7016–7026. https://doi.org/10.1523/JNEUROSCI.22-16-07016.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wilms H, Hartmann D, Sievers J (1997) Ramification of microglia, monocytes and macrophages in vitro: influences of various epithelial and mesenchymal cells and their conditioned media *. Cell Tissue Res 287:447–458. https://doi.org/10.1007/s004410050769

    Article  CAS  PubMed  Google Scholar 

  46. Neubrand VE, Pedreño M, Caro M et al (2014) Mesenchymal stem cells induce the ramification of microglia via the small RhoGTPases Cdc42 and Rac1: RhoGTPases regulate microglia’s ramification. Glia 62:1932–1942. https://doi.org/10.1002/glia.22714

    Article  PubMed  Google Scholar 

  47. Kloss CUA, Bohatschek M, Kreutzberg GW, Raivich G (2001) Effect of lipopolysaccharide on the morphology and integrin immunoreactivity of ramified microglia in the mouse brain and in cell culture. Exp Neurol 168:32–46. https://doi.org/10.1006/exnr.2000.7575

    Article  CAS  PubMed  Google Scholar 

  48. Hensley K (2003) Message and protein-level elevation of tumor necrosis factor α (TNFα) and TNFα-modulating cytokines in spinal cords of the G93A-SOD1 mouse model for amyotrophic lateral sclerosis. Neurobiol Dis 14:74–80. https://doi.org/10.1016/S0969-9961(03)00087-1

    Article  CAS  PubMed  Google Scholar 

  49. Saura J (2007) Microglial cells in astroglial cultures: a cautionary note. J Neuroinflammation 4:26. https://doi.org/10.1186/1742-2094-4-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Macco R, Pelizzoni I, Consonni A et al (2013) Astrocytes acquire resistance to iron-dependent oxidative stress upon proinflammatory activation. J Neuroinflammation. https://doi.org/10.1186/1742-2094-10-130

    Article  PubMed  PubMed Central  Google Scholar 

  51. John GR, Lee SC, Brosnan CF (2003) Cytokines: powerful regulators of glial cell activation. Neuroscientist 9:10–22. https://doi.org/10.1177/1073858402239587

    Article  CAS  PubMed  Google Scholar 

  52. Guha M, Mackman N (2001) LPS induction of gene expression in human monocytes. Cell Signal 13:85–94. https://doi.org/10.1016/S0898-6568(00)00149-2

    Article  CAS  PubMed  Google Scholar 

  53. Clausen F, Lundqvist H, Ekmark S et al (2004) Oxygen free radical-dependent activation of extracellular signal-regulated kinase mediates apoptosis-like cell death after traumatic brain injury. J Neurotrauma 21:1168–1182. https://doi.org/10.1089/neu.2004.21.1168

    Article  PubMed  Google Scholar 

  54. MacInnis BL, Campenot RB (2005) Regulation of Wallerian degeneration and nerve growth factor withdrawal-induced pruning of axons of sympathetic neurons by the proteasome and the MEK/Erk pathway. Mol Cell Neurosci 28:430–439. https://doi.org/10.1016/j.mcn.2004.10.003

    Article  CAS  PubMed  Google Scholar 

  55. Toro-Tapia G, Villaseca S, Beyer A et al (2018) The Ric-8A/Gα13/FAK signalling cascade controls focal adhesion formation during neural crest cell migration in Xenopus. Development 145:dev164269. https://doi.org/10.1242/dev.164269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Uhlemann R, Gertz K, Boehmerle W et al (2016) Actin dynamics shape microglia effector functions. Brain Struct Funct 221:2717–2734. https://doi.org/10.1007/s00429-015-1067-y

    Article  CAS  PubMed  Google Scholar 

  57. Persson A-K, Estacion M, Ahn H et al (2014) Contribution of sodium channels to lamellipodial protrusion and Rac1 and ERK1/2 activation in ATP-stimulated microglia: Sodium Channels and Lamellipodial Protrusion. Glia 62:2080–2095. https://doi.org/10.1002/glia.22728

    Article  PubMed  Google Scholar 

  58. Parsons JT, Horwitz AR, Schwartz MA (2010) Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol 11:633–643. https://doi.org/10.1038/nrm2957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Milner R, Campbell IL (2003) The extracellular matrix and cytokines regulate microglial integrin expression and activation. J Immunol 170:3850–3858. https://doi.org/10.4049/jimmunol.170.7.3850

    Article  CAS  PubMed  Google Scholar 

  60. Krady JK, Basu A, Levison SW, Milner RJ (2002) Differential expression of protein tyrosine kinase genes during microglial activation. Glia 40:11–24. https://doi.org/10.1002/glia.10101

    Article  PubMed  Google Scholar 

  61. Maa M-C, Chang MY, Chen Y-J et al (2008) Requirement of inducible nitric-oxide synthase in lipopolysaccharide-mediated Src induction and macrophage migration*. J Biol Chem 283:31408–31416. https://doi.org/10.1074/jbc.M801158200

    Article  CAS  PubMed  Google Scholar 

  62. Maa M-C, Chang MY, Hsieh M-Y et al (2010) Butyrate reduced lipopolysaccharide-mediated macrophage migration by suppression of Src enhancement and focal adhesion kinase activity. J Nutr Biochem 21:1186–1192. https://doi.org/10.1016/j.jnutbio.2009.10.004

    Article  CAS  PubMed  Google Scholar 

  63. Maa M-C, Chang MY, Li J et al (2011) The iNOS/Src/FAK axis is critical in Toll-like receptor-mediated cell motility in macrophages. Biochim Biophys Acta Mol Cell Res 1813:136–147. https://doi.org/10.1016/j.bbamcr.2010.09.004

    Article  CAS  Google Scholar 

  64. Socodato R, Portugal CC, Domith I et al (2015) c-Src function is necessary and sufficient for triggering microglial cell activation: c-Src induces proinflammatory signature in microglia. Glia 63:497–511. https://doi.org/10.1002/glia.22767

    Article  PubMed  Google Scholar 

  65. Song GJ, Jung M, Kim J-H et al (2016) A novel role for protein tyrosine phosphatase 1B as a positive regulator of neuroinflammation. J Neuroinflammation 13:86. https://doi.org/10.1186/s12974-016-0545-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xu P, Huang M-W, Xiao C-X et al (2017) Matairesinol suppresses neuroinflammation and migration associated with Src and ERK1/2-NF-κB pathway in activating BV2 microglia. Neurochem Res 42:2850–2860. https://doi.org/10.1007/s11064-017-2301-1

    Article  CAS  PubMed  Google Scholar 

  67. Sanlioglu S, Williams CM, Samavati L et al (2001) Lipopolysaccharide induces Rac1-dependent reactive oxygen species formation and coordinates tumor necrosis factor-α secretion through IKK regulation of NF-κB. J Biol Chem 276:30188–30198. https://doi.org/10.1074/jbc.M102061200

    Article  CAS  PubMed  Google Scholar 

  68. Cuadrado A, Martín-Moldes Z, Ye J, Lastres-Becker I (2014) Transcription factors NRF2 and NF-κB are coordinated effectors of the Rho family, GTP-binding protein RAC1 during inflammation. J Biol Chem 289:15244–15258. https://doi.org/10.1074/jbc.M113.540633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bamburg JR, Bernstein BW, Davis RC et al (2010) ADF/cofilin-actin rods in neurodegenerative diseases. CAR 7:241–250. https://doi.org/10.2174/156720510791050902

    Article  CAS  Google Scholar 

  70. Alhadidi Q, Shah ZA (2018) Cofilin mediates LPS-induced microglial cell activation and associated neurotoxicity through activation of NF-κB and JAK–STAT pathway. Mol Neurobiol 55:1676–1691. https://doi.org/10.1007/s12035-017-0432-7

    Article  CAS  PubMed  Google Scholar 

  71. Arber S, Barbayannis FA, Hanser H et al (1998) Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393:805–809. https://doi.org/10.1038/31729

    Article  CAS  PubMed  Google Scholar 

  72. Lin F, Sepich DS, Chen S et al (2005) Essential roles of Gα12/13 signaling in distinct cell behaviors driving zebrafish convergence and extension gastrulation movements. J Cell Biol 169:777–787. https://doi.org/10.1083/jcb.200501104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Parks S, Wieschaus E (1991) The drosophila gastrulation gene concertina encodes a Gα-like protein. Cell 64:447–458. https://doi.org/10.1016/0092-8674(91)90652-F

    Article  CAS  PubMed  Google Scholar 

  74. Xu J, Wang F, Van Keymeulen A et al (2003) Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114:201–214. https://doi.org/10.1016/S0092-8674(03)00555-5

    Article  CAS  PubMed  Google Scholar 

  75. Bian D, Mahanivong C, Yu J et al (2006) The G12/13-RhoA signaling pathway contributes to efficient lysophosphatidic acid-stimulated cell migration. Oncogene 25:2234–2244. https://doi.org/10.1038/sj.onc.1209261

    Article  CAS  PubMed  Google Scholar 

  76. Kelly P, Moeller BJ, Juneja J et al (2006) The G12 family of heterotrimeric G proteins promotes breast cancer invasion and metastasis. Proc Natl Acad Sci 103:8173–8178. https://doi.org/10.1073/pnas.0510254103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kelly P, Stemmle LN, Madden JF et al (2006) A role for the G12 family of heterotrimeric G proteins in prostate cancer invasion. J Biol Chem 281:26483–26490. https://doi.org/10.1074/jbc.M604376200

    Article  CAS  PubMed  Google Scholar 

  78. Dou Y, Wu H, Li H et al (2012) Microglial migration mediated by ATP-induced ATP release from lysosomes. Cell Res 22:1022–1033. https://doi.org/10.1038/cr.2012.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Honma S, Saika M, Ohkubo S et al (2006) Thromboxane A2 receptor-mediated G12/13-dependent glial morphological change. Eur J Pharmacol 545:100–108. https://doi.org/10.1016/j.ejphar.2006.06.062

    Article  CAS  PubMed  Google Scholar 

  80. Saito M, Tanaka H, Sasaki M et al (2010) Involvement of aquaporin in thromboxane A2 receptor-mediated, G12/13/RhoA/NHE-sensitive cell swelling in 1321N1 human astrocytoma cells. Cell Signal 22:41–46. https://doi.org/10.1016/j.cellsig.2009.09.006

    Article  CAS  PubMed  Google Scholar 

  81. Kitamura K, Singer WD, Star RA et al (1996) Induction of inducible nitric-oxide synthase by the heterotrimeric G protein Gα13*. J Biol Chem 271:7412–7415. https://doi.org/10.1074/jbc.271.13.7412

    Article  CAS  PubMed  Google Scholar 

  82. Kloss L, Dollt C, Schledzewski K et al (2019) ADP secreted by dying melanoma cells mediates chemotaxis and chemokine secretion of macrophages via the purinergic receptor P2Y12. Cell Death Dis 10:760. https://doi.org/10.1038/s41419-019-2010-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bloomfield PS, Bonsall D, Wells L et al (2018) The effects of haloperidol on microglial morphology and translocator protein levels: an in vivo study in rats using an automated cell evaluation pipeline. J Psychopharmacol 32:1264–1272. https://doi.org/10.1177/0269881118788830

    Article  CAS  PubMed  Google Scholar 

  84. Nam HY, Nam JH, Yoon G et al (2018) Ibrutinib suppresses LPS-induced neuroinflammatory responses in BV2 microglial cells and wild-type mice. J Neuroinflammation 15:271. https://doi.org/10.1186/s12974-018-1308-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang Y-H (2019) Inhibitory effect of Houttuynia cordata Thunb on LPS-induced retinal microglial activation. Int J Ophthalmol 12:1095–1100. https://doi.org/10.18240/ijo.2019.07.07

    Article  PubMed  PubMed Central  Google Scholar 

  86. Moers A, Nürnberg A, Goebbels S et al (2008) Gα12/Gα13 deficiency causes localized overmigration of neurons in the developing cerebral and cerebellar cortices. MCB 28:1480–1488. https://doi.org/10.1128/MCB.00651-07

    Article  CAS  PubMed  Google Scholar 

  87. Francis SA, Shen X, Young JB et al (2006) Rho GEF Lsc is required for normal polarization, migration, and adhesion of formyl-peptide–stimulated neutrophils. Blood 107:1627–1635. https://doi.org/10.1182/blood-2005-03-1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gutkind JS (1998) Cell growth control by G protein-coupled receptors: from signal transduction to signal integration. Oncogene 17:1331–1342. https://doi.org/10.1038/sj.onc.1202186

    Article  CAS  PubMed  Google Scholar 

  89. Cotton M, Claing A (2009) G protein-coupled receptors stimulation and the control of cell migration. Cell Signal 21:1045–1053. https://doi.org/10.1016/j.cellsig.2009.02.008

    Article  CAS  PubMed  Google Scholar 

  90. Valderrama F, Thevapala S, Ridley AJ (2012) Radixin regulates cell migration and cell-cell adhesion through Rac1. J Cell Sci 125:3310–3319. https://doi.org/10.1242/jcs.094383

    Article  CAS  PubMed  Google Scholar 

  91. Kim HS, Ye S-K, Cho IH et al (2006) 8-Hydroxydeoxyguanosine suppresses NO production and COX-2 activity via Rac1/STATs signaling in LPS-induced brain microglia. Free Radical Biol Med 41:1392–1403. https://doi.org/10.1016/j.freeradbiomed.2006.07.018

    Article  CAS  Google Scholar 

  92. Shen B, Zhao X, O’Brien KA et al (2013) A directional switch of integrin signalling and a new anti-thrombotic strategy. Nature 503:131–135. https://doi.org/10.1038/nature12613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bokoch GM (2005) Regulation of innate immunity by Rho GTPases. Trends Cell Biol 15:163–171. https://doi.org/10.1016/j.tcb.2005.01.002

    Article  CAS  PubMed  Google Scholar 

  94. Rahimifard M, Maqbool F, Moeini-Nodeh S et al (2017) Targeting the TLR4 signaling pathway by polyphenols: a novel therapeutic strategy for neuroinflammation. Ageing Res Rev 36:11–19. https://doi.org/10.1016/j.arr.2017.02.004

    Article  CAS  PubMed  Google Scholar 

  95. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318. https://doi.org/10.1016/0166-2236(96)10049-7

    Article  CAS  PubMed  Google Scholar 

  96. Fan Y, Xie L, Chung CY (2017) Signaling pathways controlling microglia chemotaxis. Mol Cells 40:163–168. https://doi.org/10.14348/molcells.2017.0011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Part of this work was carried out in ALEMBIC, the advanced microscopy laboratory established by the San Raffaele Scientific Institute and University.

Funding

This work was carried out within the framework of the NeOn project (ID 239047 to DZ), with the financial support of Regione Lombardia (POR FESR 2014 – 2020), and the Ivascomar project (CTN01_00177_165430 to DZ), Cluster Tecnologico Nazionale Scienze della Vita “Alisei”, Italian Ministry of Research.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, SB, BB, DZ; resources, DZ; data curation, SB, BB, SC; writing–original draft preparation, SB; writing–review and editing, SB, BB, FG, FC, DZ; all authors read and approved the final manuscript.

Corresponding authors

Correspondence to Barbara Bettegazzi or Daniele Zacchetti.

Ethics declarations

Ethics Approval

All animal experiments have been carried out following the ARRIVE guidelines and in accordance with the EU Directive 2010/63/EU for animal experiments. The study was approved by the Institutional Animal Care and Use Committee of the San Raffaele Scientific Institute (number 752, 2016).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15850 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bettegazzi, B., Bellani, S., Cattaneo, S. et al. Gα13 Contributes to LPS-Induced Morphological Alterations and Affects Migration of Microglia. Mol Neurobiol 58, 6397–6414 (2021). https://doi.org/10.1007/s12035-021-02553-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02553-0

Keywords

Navigation