Skip to main content
Log in

A one-pot synthesis of piperidinium spirooxindoline-pyridineolates and indole-substituted pyridones in aqueous or ethanol medium

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Piperidinium spirooxindoline-pyridineolate has been prepared via one-pot multicomponent reaction of isatin, malononitrile, cyanoacetohydrazide, and piperidine in water or ethanol medium at room temperature. In addition, the synthesis of two indole-substituted 2-pyridones from indole-3-carbaldehyde, malononitrile, and cyanoacetohydrazide in the presence of piperidine is described.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Scheme 3
Scheme 4
Fig. 3

Similar content being viewed by others

Abbreviations

TLC:

Thin-layer chromatography

RT:

Room temperature

MeCN:

Acetonitrile

NR:

No reaction

FT-IR:

Fourier-transform infrared

MCR:

Multicomponent reaction

References

  1. Tauro SJ, Gawad JB (2013) Green chemistry: A boon to pharmaceutical synthesis. Int J Sci Res 2:67–69. https://doi.org/10.15373/22778179/JULY2013/22

    Article  Google Scholar 

  2. Simon MO, Li CJ (2012) Green chemistry oriented organic synthesis in water. Chem Soc Rev 41:1415–1427. https://doi.org/10.1039/C1CS15222J

  3. Bigi F, Carloni S, Ferrari L, Maggi R, Mazzacani A, Sartori G (2001) Clean synthesis in water. Part 2: Uncatalysed condensation reaction of Meldrum’s acid and aldehydes. Tetrahedron Lett 42:5203–5205. https://doi.org/10.1016/S0040-4039(01)00978-9

    Article  CAS  Google Scholar 

  4. Clark JH, Macquarrie DJ (2008) (Eds.). Handbook of Green Chemistry and Technology. John Wiley & Sons. https://doi.org/10.1002/9780470988305

  5. Li Y, Chen H, Shi C, Shi D, Ji S (2010) Efficient one-pot synthesis of spirooxindole derivatives catalyzed by l-proline in aqueous medium. J Comb Chem 12:231–237. https://doi.org/10.1021/cc9001185

    Article  CAS  PubMed  Google Scholar 

  6. Yan LJ, Wang YC (2016) Recent advances in green synthesis of 3, 3′-spirooxindoles via isatin–based one–pot multicomponent cascade reactions in aqueous medium. ChemistrySelect 1:6948–6960. https://doi.org/10.1002/slct.201601534

    Article  CAS  Google Scholar 

  7. Yu B, Yu DQ, Liu HM (2015) Spirooxindoles: Promising scaffolds for anticancer agents. Eur J Med Chem 97:673–698. https://doi.org/10.1016/j.ejmech.2014.06.056

    Article  CAS  PubMed  Google Scholar 

  8. Yu B, Yu Z, Qi PP, Yu DQ, Liu HM (2015) Discovery of orally active anticancer candidate CFI-400945 derived from biologically promising spirooxindoles: Success and challenges. Eur J Med Chem 95:35–40. https://doi.org/10.1016/j.ejmech.2015.03.020

    Article  CAS  PubMed  Google Scholar 

  9. Ye N, Chen H, Wold EA, Shi PY, Zhou J (2016) Therapeutic potential of spirooxindoles as antiviral agents. ACS Infect Dis 2:382–392. https://doi.org/10.1021/acsinfecdis.6b00041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhou LM, Qu RY, Yang GF (2020) An overview of spirooxindole as a promising scaffold for novel drug discovery. Expert Opin Drug Discovery 15:603–625. https://doi.org/10.1080/17460441.2020.1733526

    Article  CAS  Google Scholar 

  11. Panda SS, Jones RA, Bachawala P, Mohapatra PP (2017) Spirooxindoles as potential pharmacophores. Mini-Rev Med Chem 17:1515–1536. https://doi.org/10.2174/1389557516666160624125108

    Article  CAS  PubMed  Google Scholar 

  12. Pavlovska TL, Redkin RG, Lipson VV, Atamanuk DV (2016) Molecular diversity of spirooxindoles. Synth Biol Activity Mol Divers 20:299–344. https://doi.org/10.1007/s11030-015-9629-8

    Article  CAS  Google Scholar 

  13. Hien TT, White NJ, Thuy-Nhien NT, Hoa NT, Thuan PD, Tarning J, Hamed K (2017) Estimation of the in vivo MIC of cipargamin in uncomplicated Plasmodium falciparum malaria. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.01940-16

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rojas-Duran R, González-Aspajo G, Ruiz-Martel C, Bourdy G, Doroteo-Ortega VH, Alban-Castillo J, Deharo E (2012) Anti-inflammatory activity of Mitraphylline isolated from uncaria tomentosa bark. J Ethnopharmacol 143:801–804. https://doi.org/10.1016/j.jep.2012.07.015

    Article  CAS  PubMed  Google Scholar 

  15. Sebahar PR, Osada H, Usui T, Williams RM (2002) Asymmetric, stereocontrolled total synthesis of (+) and (−)-spirotryprostatin B via a diastereoselective azomethine ylide [1, 3]-dipolar cycloaddition reaction. Tetrahedron 58:6311–6322. https://doi.org/10.1016/S0040-4020(02)00630-0

    Article  CAS  Google Scholar 

  16. Kang TH, Matsumoto K, Tohda M, Murakami Y, Takayama H, Kitajima M, Watanabe H (2002) Pteropodine and isopteropodine positively modulate the function of rat muscarinic M1 and 5-HT2 receptors expressed in Xenopus oocyte. Eur J Pharmacol 444:39–45. https://doi.org/10.1016/s0014-2999(02)01608-4

    Article  CAS  PubMed  Google Scholar 

  17. Mei GJ, Shi F (2018) Catalytic asymmetric synthesis of spirooxindoles: recent developments. Chem Commun 54:6607–6621. https://doi.org/10.1039/C8CC02364F

    Article  CAS  Google Scholar 

  18. Youseftabar-Miri L, Hosseinjani-Pirdehi H, Akrami A, Hallajian S (2020) Recent investigations in the synthesis of spirooxindole derivatives by Iranian researchers. J Iran Chem Soc 17:2179–2231. https://doi.org/10.1007/s13738-020-01921-2

    Article  CAS  Google Scholar 

  19. Xia M, Ma RZ (2014) Recent progress on routes to spirooxindole systems derived from isatin. J Heterocycl Chem 51:539–554. https://doi.org/10.1002/jhet.1114

    Article  CAS  Google Scholar 

  20. Ball-Jones NR, Badillo JJ, Franz AK (2012) Strategies for the enantioselective synthesis of spirooxindoles. Org Biomol Chem 10:5165–5181. https://doi.org/10.1039/C2OB25184A

    Article  CAS  PubMed  Google Scholar 

  21. Bariwal J, Voskressensky LG, Van der Eycken EV (2018) Recent advances in spirocyclization of indole derivatives. Chem Soc Rev 47:3831–3848. https://doi.org/10.1039/C7CS00508C

    Article  PubMed  Google Scholar 

  22. Nasri S, Bayat M, Mirzaei F (2021) Recent strategies in the synthesis of spiroindole and spirooxindole scaffolds. Top Curr Chem 379:1–37. https://doi.org/10.1007/s41061-021-00337-7

    Article  CAS  Google Scholar 

  23. Stahl PH, Wermuth CG (2003) Handbook of pharmaceutical salts: properties, selection and use. J Med Chem 46:1277. https://doi.org/10.1021/jm030019n

    Article  CAS  Google Scholar 

  24. Berry DJ, Steed JW (2017) Pharmaceutical cocrystals, salts and multicomponent systems; intermolecular interactions and property based design. Drug Delivery Rev 117:3–24. https://doi.org/10.1016/j.addr.2017.03.003

    Article  CAS  Google Scholar 

  25. Głowacki ED, Irimia-Vladu M, Bauer S, Sariciftci NS (2013) Hydrogen-bonds in molecular solids–from biological systems to organic electronics. J Mater Chem B 1:3742–3753. https://doi.org/10.1039/C3TB20193G

    Article  PubMed  Google Scholar 

  26. Fatahpour M, Hazeri N, Maghsoodlou MT, Sadeh FN, Lshkari M (2018) One-pot multicomponent synthesis of piperidinium 3,3’-(arylmethylene) bis (2-hydroxynaphthalene-1,4-diones): NMR spectroscopic and X-ray structure characterization. Turk J Chem 42:908–917. https://doi.org/10.3906/kim-1712-52

    Article  CAS  Google Scholar 

  27. Baharfar R, Asghari S, Zaheri F, Shariati N (2017) Three-component synthesis of novel spirooxindole–furan derivatives using pyridinium salts. C R Chim 20:359–364. https://doi.org/10.1016/j.crci.2016.07.001

    Article  CAS  Google Scholar 

  28. Sun J, Shen GL, Huang Y, Yan CG (2017) Formation of diverse polycyclic spirooxindoles via three-component reaction of isoquinolinium salts, isatins and malononitrile. Sci Rep 7:41024. https://doi.org/10.1038/srep41024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bashkar M, Bavadi M, Ghaderi E, Niknam K (2020) Synthesis of mono-and bis-spirooxindole derivatives on water using double salt of aluminum sulfate–sulfuric acid as a reusable catalyst. Mol Diversity. https://doi.org/10.1007/s11030-020-10091-5

    Article  Google Scholar 

  30. Bayat M, Nasri S, Notash B (2017) Synthesis of new 3-cyanoacetamide pyrrole and 3-acetonitrile pyrrole derivatives. Tetrahedron 73:1522–1527. https://doi.org/10.1016/j.tet.2017.02.005

    Article  CAS  Google Scholar 

  31. Bayat M, Nasri S (2017) A catalyst-free approach to regioselective synthesis of multi-functional 1H-pyrrolo[1,2-a]fused[1,3]diazaheterocycle using ketene dithioacetals in water–ethanol media. Tetrahedron Lett 58:3107–3111. https://doi.org/10.1016/j.tetlet.2017.06.076

    Article  CAS  Google Scholar 

  32. Mohammadi A, Bayat M, Nasri S (2019) Catalyst-free four-component domino synthetic approach toward versatile multicyclic spirooxindole pyran scaffolds. RSC Adv 9:16525–16533. https://doi.org/10.1039/C9RA03214B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hosseini H, Bayat M (2018) Cyanoacetohydrazides in synthesis of heterocyclic compounds. Top Curr Chem 376:1–67. https://doi.org/10.1007/s41061-018-0218-z

    Article  CAS  Google Scholar 

  34. Allam YA, Nawwar GA (2002) Facile synthesis of 3-spiroindolines. Heteroat Chem 13:207–210. https://doi.org/10.1002/hc.10020

    Article  CAS  Google Scholar 

  35. Hosseini H, Bayat M (2018) An efficient and ecofriendly synthesis of highly functionalized pyridones via a one-pot three-component reaction. RSC Adv 8:27131–27143. https://doi.org/10.1039/C8RA05690K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Elmoghayar MRH, El-Agamey AGA, Nasr MYAS, Sallam MMM (1984) Activated nitriles in heterocyclic synthesis. Part III. Synthesis of N-amino-2-pyridone, pyranopyrazole and thiazolopyridine derivatives. J Heterocycl Chem 21:1885–1887. https://doi.org/10.1002/jhet.5570210660

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Iran National Science Foundation (Grant No. 98004758) for financial support. We acknowledge the support of this research from Imam Khomeini International University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Bayat.

Ethics declarations

Conflicts of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 13404 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaei, F., Bayat, M. & Nasri, S. A one-pot synthesis of piperidinium spirooxindoline-pyridineolates and indole-substituted pyridones in aqueous or ethanol medium. Mol Divers 26, 2039–2048 (2022). https://doi.org/10.1007/s11030-021-10313-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-021-10313-4

Keywords

Navigation