Skip to main content

Advertisement

Log in

Low current ripple high step-up interleaved boost converter with switched-capacitors and switched-inductors

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

A low current ripple high step-up interleaved boost converter with switched-capacitors and switched-inductors that can be used in renewable resources such as photovoltaic energy and fuel cells is studied in this paper. In the proposed converter, the voltage gain is significantly increased and the voltage stresses of the switches are reduced by applying two switched-inductor units to replace individual inductors and by adding a switched-capacitor network to the output side. In addition, the current ripple of the inductor branch is reduced with the help of introducing a coupled-inductor, while the dynamic response speed remains almost unchanged. Therefore, smaller inductors can be used to reduce the volume of the converter. In this paper, the operating principles; the steady-state performance including the voltage gain, the voltage stresses of the switching devices, and the current ripple of the inductor; and transient-state performance of the proposed topology are analyzed. Moreover, the design criteria of the coupled-inductor are given in detail, and the double closed-loop PI controllers are designed. Finally, experimental results are given for a 160 W, 18 V input to 240 V output prototype. These results verify the correctness of the theoretical analysis. In addition, the efficiency analysis and power calculations are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Bose, B.-K.: Global energy scenario and impact of power electronics in 21st century. IEEE Trans. Ind. Electron. 60(7), 2638–2651 (2013)

    Article  Google Scholar 

  2. Brito, M., Galotto, L., Sampaio, L.-P., Melo, G., Canesin, C.-A.: Evaluation of the main MPPT techniques for photovoltaic applications. IEEE Trans. Ind. Electron. 60(3), 1156–1167 (2013)

    Article  Google Scholar 

  3. Liu, H., Hu, H., Wu, H., Xing, Y., Batatrseh, I.: Overview of high-step-up coupled-inductor boost converters. IEEE J. Emerg. Sel. Top. Power Electron. 4(2), 689–704 (2016)

  4. Ai, Y., Li, X., Liu, Q.F., Tao, H.: Research on key performance of novel interleaved parallel high-gain DC/DC converter. CPSS Transactions on Power Electronics and Applications. 5(4), 364–371 (2020)

    Article  Google Scholar 

  5. Zhou, D., Pietkiewicz, A., Cuk, S.: A three-switch high-voltage converter. IEEE Trans. Power Electron. 14(1), 177–183 (1999)

    Article  Google Scholar 

  6. Kim, J., Moon, G.: Derivation, analysis, and comparison of non-isolated single-switch high step-up converters with low voltage stress. IEEE Trans. Power Electron. 30(3), 1336–1344 (2015)

    Article  Google Scholar 

  7. Baddipadiga, B., Prabhala, V., Ferdowsi, M.: A family of high-voltage-gain DC–DC vonverters based on a generalized structure. IEEE Trans. Power Electron. 33(10), 8399–8411 (2017)

    Article  Google Scholar 

  8. Forouzesh, M., Siwakoti, Y.-P., Gorji, S.-A., Blaabjerg, F., Lehman, B.: Step-up DC–DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications. IEEE Trans. Power Electron. 32(12), 9143–9178 (2017)

    Article  Google Scholar 

  9. Morales-Saldana, J.-A., Gutierrez, E.-E.-C., Leyva-Ramos, J.: Modeling of switch-mode DC-DC cascade converters. IEEE Trans. Aerosp. Electron. Sys. 38(1), 295–299 (2002)

    Article  Google Scholar 

  10. Chen, M., Li, K., Hu, J., Ioinovici, A.: Generation of a family of very high DC gain power electronics circuits based on switched-capacitor-inductor cells starting from a simple graph. IEEE Trans. Circuits. Syst. 63(12), 2381–2392 (2016)

    Article  Google Scholar 

  11. Uno, M., Kukita, A.: PWM switched capacitor converter with switched-capacitor-inductor cell for adjustable high step-down voltage conversion. IEEE Trans. Power Electron. 34(1), 425–437 (2019)

    Article  Google Scholar 

  12. Li, S., Xie, W., Smedley, K.-M.: A family of an automatic interleaved dickson switched-capacitor converter and its ZVS resonant configuration. IEEE Trans. Ind. Electron. 66(1), 255–264 (2019)

    Article  Google Scholar 

  13. Chen, J., Ding, K., Zhong, Y., Deng, F., Abulanwar, S.: A double input-parallel-output-series hybrid switched-capacitor boost converter. Chinese Journal of Electrical Engineering. 6(4), 15–27 (2020)

    Article  Google Scholar 

  14. Barzegarkhoo, R., Siwakoti, P.-Y., Vosoughi, N., Blaabjerg, F.: Six-switch step-up common-grounded five-level inverter with switched-capacitor cell for transformerless grid-tied PV applications. IEEE Trans. Ind. Electron. 68(2), 1374–1387 (2021)

    Article  Google Scholar 

  15. Dalla Vecchia, M., Van den Broeck, G., Ravyts, S., Tant, J., Driesen, J.: A family of DC–DC converters with high step-down voltage capability based on the valley-fill switched capacitor principle. IEEE Trans. Ind. Electron. 68(7), 5810–5820 (2021)

    Article  Google Scholar 

  16. Zhu, M., Yu, K., Luo, F.L.: Switched inductor Z-Source inverter. IEEE Trans. Power Electron. 25(8), 2150–2158 (2010)

    Article  Google Scholar 

  17. Zhao, Y., Li, W., Deng, Y., He, X.: Analysis, design, and experimentation of an isolated ZVT boost converter with coupled inductors. IEEE Trans. Power Electron. 26(2), 541–550 (2011)

    Article  Google Scholar 

  18. Faridpak, B., Bayat, M., Nasiri, M., Samanbakhsh, R., Farrokhifar, M.: Improved hybrid switched inductor/switched capacitor DC–DC converters. IEEE Trans. Power Electron. 36(3), 3053–3062 (2021)

    Article  Google Scholar 

  19. Dwari, S., Parsa, L.: An efficient high-step-up interleaved DC–DC converter with a common active clamp. IEEE Trans. Power Electron. 26(1), 66–78 (2010)

    Article  Google Scholar 

  20. Zhao, Q., Lee, F.-C.: High-efficiency, high step-up DC-DC converter. IEEE Trans. Power Electron. 18(1), 65–73 (2013)

    Article  MathSciNet  Google Scholar 

  21. Hu, R., Zeng, J., Liu, J., Cheng, K.-W.-E.: A nonisolated bidirectional DC–DC converter with high voltage conversion ratio based on coupled inductor and switched capacitor. IEEE Trans. Ind. Electron. 68(2), 1155–1165 (2021)

    Article  Google Scholar 

  22. Ye, Y., Chen, S., Yi, Y.: Switched-capacitor and coupled-inductor-based high step-up converter with improved voltage gain. IEEE J. Emerg. Sel. Top. Power Electron. 9(1), 754–764 (2021)

  23. Forouzesh, M., Shen, Y., Yari, K., Siwakoti, Y.-P., Blaabjerg, F.: High-efficiency high step-up DC–DC converter with dual coupled inductors for grid-connected photovoltaic systems. IEEE Trans. Power Electron. 33(7), 5967–5982 (2018)

    Article  Google Scholar 

  24. Prabhala, V., Fajri, P., Gouribhatla, V., Baddipadiga, B.-P., Ferdowsi, M.: A DC–DC converter with high voltage gain and two input boost stages. IEEE Trans. Power Electron. 31(6), 4206–4215 (2016)

    Article  Google Scholar 

  25. Lin, G., Zhang, Z.: Low input ripple high step-up extendable hybrid DC-DC converter. IEEE Access. 7, 158744–158752 (2019)

    Article  Google Scholar 

  26. Moradisizkoohi, H., Elsayad, N., Mohammed, O.-A.: A voltage-quadrupler interleaved bidirectional DC–DC converter with intrinsic equal current sharing characteristic for electric vehicles. IEEE Trans. Ind. Electron. 68(2), 1803–1813 (2021)

    Article  Google Scholar 

  27. Zhu, B., Chen, S., Zhang, Y., Huang, Y.: An interleaved zero-voltage zero-current switching high step-up DC-DC converter. IEEE Access. 9, 5563–5572 (2021)

    Article  Google Scholar 

  28. Maalandish, M., Hosseini, S.-H., Ghasemzadeh, S., Babaei, E., Jalilzadeh, T.: A novel multiphase high step-up DC/DC boost converter with lower losses on semiconductors. IEEE J. Emerg. Sel. Top. Power Electron. 7(1), 541–554 (2019)

  29. Guo, Z., Wang, Y., Wang, F., Tian, X., Dong, Y.: Wide input/output control strategy for multiphase series capacitor bidirectional DC-DC converters. Journal of Power Electronics. 21(5), 735–746 (2021)

    Article  Google Scholar 

  30. Roy, J., Ayyanar, R.: Sensor-less current sharing over wide operating range for extended-duty-ratio boost converter. IEEE Trans. Power Electron. 32(11), 8763–8777 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Shandong Provincial Natural Science Foundation (ZR2018MEE037), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yubin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Wang, Y. & Wang, F. Low current ripple high step-up interleaved boost converter with switched-capacitors and switched-inductors. J. Power Electron. 21, 1646–1658 (2021). https://doi.org/10.1007/s43236-021-00313-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-021-00313-w

Keywords

Navigation