Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-16T12:30:38.565Z Has data issue: false hasContentIssue false

Amphiboles and phyllosilicates in the A-type Mandira Granite Massif, Graciosa Province, SE Brazil: Textures, composition and crystallisation conditions

Published online by Cambridge University Press:  19 August 2021

Astrid Siachoque*
Affiliation:
Institute of Geosciences, Department of Mineralogy and Geotectonics, University of São Paulo, 05508-060São Paulo, Brazil
Caio A. Santos
Affiliation:
Institute of Geosciences, Department of Mineralogy and Geotectonics, University of São Paulo, 05508-060São Paulo, Brazil
Silvio R.F Vlach
Affiliation:
Institute of Geosciences, Department of Mineralogy and Geotectonics, University of São Paulo, 05508-060São Paulo, Brazil
*
Author for correspondence: Astrid Siachoque, Email: astridsia1116@hotmail.com

Abstract

Amphibole and biotite were the principal mafic minerals precipitated during the magmatic and post-magmatic (including hydrothermal) crystallisation stages of coeval metaluminous to slightly peraluminous syenogranites and peralkaline alkali-feldspar granites of the Mandira Granite Massif, in the post-collisional A-type Graciosa Province, S-SE Brazil. Magmatic calcic (ferro-ferri-hornblende and hastingsite) amphiboles occur in the metaluminous syenogranites, whereas calcic (ferro-edenite), sodic–calcic (ferro-ferri-winchite) and sodic (arfvedsonite and riebeckite) amphiboles occur in peralkaline alkali-feldspar granites. Rare earth element (REE) contents decrease from hornblende to winchite and riebeckite, and the partition coefficients indicate increasing compatibility from light rare earth elements (LREE) to heavy rare earth elements (HREE), with a marked preference for the HREE over the LREE in the sodic–calcic and, particularly, the sodic amphiboles. Post-magmatic calcic- (ferro-actinolite) and sodic- (riebeckite) amphiboles are also present in the peralkaline granites. Magmatic biotite (annite) is dominant in syenogranites, whereas post-magmatic annite and late-to post-magmatic annite evolving to siderophyllite occurs in the peralkaline granites. Typical hydrothermal phyllosilicates are chlorite (chamosite) in syenogranites and related greisens, and ferri-stilpnomelane which is present in both peralkaline granites and metaluminous syenogranites. Lithostatic pressure estimates suggest that the main granites were emplaced under pressures of ~93–230 MPa, with close-to-liquidus temperatures varying from ~830°C for syenogranites to ~900°C for the peralkaline granites. The original magmas crystallised mainly under relatively reduced (buffered at ~ –1 ≤ QFM ≤ 0), and more oxidising (somewhat above QFM) environments, respectively. Chlorite, replacing biotite in syenogranites and as the main mineral in the related greisens, permits the temperature of the main hydrothermal event to have taken place between 250 and 272°C. Estimated log (fHF/fHCl) values from biotite compositions vary from ~ –2 to –1 (syenogranites) and ~ –3.5 to –2 (peralkaline granites) and indicate F preference over Cl in the hydrothermal fluid phase.

Type
Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Ian Coulson

References

Andersen, T., Elburg, M. and Erambert, M. (2017) The miaskitic-to-agpaitic transition in peralkaline nepheline syenite (white foyaite) from the Pilanesberg Complex, South Africa. Chemical Geology, 455, 166181.CrossRefGoogle Scholar
Anderson, J.L. and Smith, D.R. (1995) The effects of temperature and $f_{{\rm O}_ 2}$ on the Al-in-hornblende barometer. American Mineralogist, 80, 549559.10.2138/am-1995-5-614CrossRefGoogle Scholar
Anderson, J.L.L., Barth, A.P., Wooden, J.L. and Mazdab, F. (2008) Thermometers and thermobarometers in granitic systems. Pp 121142 in: Minerals, Inclusions and Volcanic Processes (Putirka, K.D. and Tepley, F.J. III, editors). Reviews in Mineralogy and Geochemistry, 69. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Araujo, F.P., Martins, L., Pereira, G. de S. and Janasi, V. de A. (2020) Inhandjara topaz leucogranite: A late rare metal-mineralized stock within the A-type Itu batholith, SE Brazil. Journal of South American Earth Sciences, 101, 102623.CrossRefGoogle Scholar
Ayati, F., Yavuz, F., Noghreyan, M., Haroni, H.A. and Yavuz, R. (2008) Chemical characteristics and composition of hydrothermal biotite from the Dalli porphyry copper prospect, Arak, central province of Iran. Mineralogy and Petrology, 94, 107122.CrossRefGoogle Scholar
Baidya, A.S., Paul, J., Pal, D.C. and Upadhyay, D. (2017) Mode of occurrences and geochemistry of amphibole in the Kolihan–Chandmari copper deposits, Rajasthan, India: insight into the ore-forming process. Ore Geology Reviews, 80, 10921110.CrossRefGoogle Scholar
Bernard, C., Estrade, G., Salvi, S., Béziat, D. and Smith, M. (2020) Alkali pyroxenes and amphiboles: a window on rare earth elements and other high field strength elements behavior through the magmatic–hydrothermal transition of peralkaline granitic systems. Contributions to Mineralogy and Petrology, 175, 127.CrossRefGoogle Scholar
Blundy, J.D. and Holland, T.J.B. (1990) Mineralogy and Calcic amphibole equilibria and a new amphibole– plagioclase geothermometer. Contributions to Mineralogy and Petrology, 104, 208224.10.1007/BF00306444CrossRefGoogle Scholar
Blundy, J. and Wood, B. (1994) Prediction of crystal–melt partition coefficients from elastic moduli. Nature, 372, 452454.10.1038/372452a0CrossRefGoogle Scholar
Blundy, J. and Wood, B. (2003) Partitioning of trace elements between crystals and melts. Earth and Planetary Science Letters, 210, 383397.10.1016/S0012-821X(03)00129-8CrossRefGoogle Scholar
Bottazzi, P., Tiepolo, M., Vannucci, R., Zanetti, A., Brumm, R., Foley, S.F. and Oberti, R. (1999) Distinct site preferences for heavy and light REE in amphibole and the prediction of (Amph/L)D(REE). Contributions to Mineralogy and Petrology, 137, 3645.CrossRefGoogle Scholar
Clowe, C.A., Popp, R.K. and Fritz, S.J. (1988) Experimental investigation of the effect of oxygen fugacity on ferric-ferrous ratios and unit-cell parameters of four natural clinoamphiboles. American Mineralogist, 73, 487.Google Scholar
Dalou, C. Boulon, J., T. Koga, K., Dalou, R. and Dennen, R.L. (2018) DOUBLE FIT: Optimization procedure applied to lattice strain model. Computers and Geosciences, 117, 4956.CrossRefGoogle Scholar
Eby, G.N. (1992) Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20, 641.10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;22.3.CO;2>CrossRefGoogle Scholar
Eggleton, R.A. (1972) The crystal structure of stilpnomelane. Part II. The full cell. Mineralogical Magazine, 38, 693711.CrossRefGoogle Scholar
El-Sharkawy, M.F. (2000) Talc mineralization of ultramafic affinity in the Eastern Desert of Egypt. Mineralium Deposita, 35, 346363.CrossRefGoogle Scholar
Ernst, W.G. (1962) Synthesis, stability relations, and occurrence of riebeckite and riebeckite–arfvedsonite solid solutions. The Journal of Geology, 70, 689736.CrossRefGoogle Scholar
Ernst, W.G. (1968) Amphiboles. Springer Inc., Springer–Verlag, New York, 233 pp.CrossRefGoogle Scholar
Faleiros, F.M., Campanha, G.A. da C., Martins, L., Vlach, S.R.F. and Vasconcelos, P.M. (2011) Ediacaran high-pressure collision metamorphism and tectonics of the southern Ribeira Belt (SE Brazil): Evidence for terrane accretion and dispersion during Gondwana assembly. Precambrian Research, 189, 263291.CrossRefGoogle Scholar
Garcia, R.P. (2015) Evolução magmática e hidrotermal de granitos de “tipo-A” reduzidos: o exemplo do Pluton Desemborque, Maciço Guaraú, SP. Master's Dissertation. University of Sao Paulo, Sao Paulo, Brazil, 223 pp.Google Scholar
Garin, Y. (2002) Mineralogia e petrologia da associação alcalina de sienitos e granitos de tipo-A do Maciço Corupá (SC). Master's Dissertation. Universty of Sao Paulo, Sao Paulo, Brazil, 168 pp.Google Scholar
Giret, A., Bonin, B. and Leger, J.M. (1980) Amphibole compositional trends in oversaturated and undersaturated alkaline plutoninc ring-complexes. The Canadian Mineralogist, 18, 481495.Google Scholar
Griffin, W.L., Powell, W.J., Pearson, N.J. and O'Reilly, S.Y. (2008) GLITTER: data reduction software for laser ablation ICP–MS. Pp. 204207 in: Laser Ablation ICP–MS in the Earth Sciences (Sylvester, P., editor). Mineralogical Association of Canada Short Course Series Volume 40.Google Scholar
Gualda, G.A.R. and Vlach, S.R.F. (2007a) The Serra da Graciosa A-type granites and syenites, southern Brazil. Part 1: Regional setting and geological characterization. Anais da Academia Brasileira de Ciências, 79, 405430.CrossRefGoogle Scholar
Gualda, G.A.R. and Vlach, S.R.F. (2007b) The Serra da Graciosa A-type granites and syenites, southern Brazil. Part 2: Petrographic and mineralogical evolution of the alkaline and aluminous associations. Lithos, 93, 310327.CrossRefGoogle Scholar
Gualda, G.A.R. and Vlach, S.R.F. (2007c) The Serra da Graciosa A-type granites and syenites, southern Brazil. Part 3: Magmatic evolution and post-magmatic breakdown of amphiboles of the alkaline association. Lithos, 93, 328339.CrossRefGoogle Scholar
Guggenheim, S., Adams, J.M., Bain, D.C., Bergaya, F., Brigatti, M.F., Drits, V.A., Formoso, M.L.L., Galan, E., Kogure, T. and Stanjek, H. (2007) Summary of recommendations of nomenclature committees relevant to clay mineralogy: Report of the Association International pour l'Etude des Argiles (AIPEA) Nomenclature Committee for 2006. Clays and Clay Minerals, 55, 646.Google Scholar
Hammarstrom, J.M. and Zen, E. (1986) Aluminum in hornblende: an empirical igneous geobarometer. American Mineralogist, 71, 12971313.Google Scholar
Harrison, T.M. and Watson, E.B. (1984) The behavior of apatite during crustal anatexis: Equilibrium and kinetic considerations. Geochimica et Cosmochimica Acta, 48, 14671477.CrossRefGoogle Scholar
Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V, Martin, R.F., Schumacher, J.C. and Welch, M.D. (2012) Nomenclature of the amphibole supergroup. American Mineralogist, 97, 20312048.10.2138/am.2012.4276CrossRefGoogle Scholar
Hilyard, M., Nielsen, R.L., Beard, J.S., Patinõ–Douce, A. and Blencoe, J. (2000) Experimental determination of the partitioning behavior of rare earth and high field strength elements between pargasitic amphibole and natural silicate melts. Geochimica et Cosmochimica Acta, 64, 11031120.CrossRefGoogle Scholar
Holland, T. and Blundy, J. (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole–plagioclase thermometry. Contributions to Mineralogy and Petrology, 116, 433447.CrossRefGoogle Scholar
Huang, H., Wang, T., Zhang, Z., Li, C. and Qin, Q. (2018) Highly differentiated fluorine-rich, alkaline granitic magma linked to rare metal mineralization: A case study from the Boziguo'er rare metal granitic pluton in South Tianshan Terrane, Xinjiang, NW China. Ore Geology Reviews, 96, 146163.CrossRefGoogle Scholar
Huang, F., Scaillet, B., Wang, R., Erdmann, S., Chen, Y., Faure, M., Liu, H., Xie, L., Wang, B. and Zhu, J. (2019) Experimental constraints on intensive crystallization parameters and fractionation in A-type granites: A case study on the Qitianling Pluton, South China. Journal of Geophysical Research: Solid Earth, 124, 1013210152.Google Scholar
Hutton, C.O. (1938) The stilpnomelane group of minerals. Mineralogical Magazine and Journal of the Mineralogical Society, 25, 172206.CrossRefGoogle Scholar
Idrus, A. (2018) Halogen chemistry of hydrothermal micas: a possible geochemical tool in vectoring to ore for porphyry copper–gold deposit. Journal of Geoscience, Engineering, Environment, and Technology, 3, 30.CrossRefGoogle Scholar
Ishihara, S. (1977) The magnetite-series and ilmenite-series granitic rocks. Mining Geology, 27, 293305.Google Scholar
Jin, C., Gao, X.Y., Chen, W.T. and Zhao, T.P. (2018) Magmatic–hydrothermal evolution of the Donggou porphyry Mo deposit at the southern margin of the North China Craton: Evidence from chemistry of biotite. Ore Geology Reviews, 92, 8496.CrossRefGoogle Scholar
Kaur, P., Chaudhri, N. and Eliyas, N. (2018) Chlorine-rich amphibole and biotite in the A-type granites, Rajasthan, NW India: Potential indicators of subsolidus fluid–rock interaction and metallogeny. Geological Journal, 54, 614630.CrossRefGoogle Scholar
Locock, A.J. (2014) An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Computers & Geosciences, 62, 111.CrossRefGoogle Scholar
Maitre, Le, Streckeisen, R., Zanettin, A., Le Bas, B., Bonin, M., and Bateman, B., P. (editors) (2002) Igneous Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences. Subcommission on the Systematics of Igneous Rocks (2nd Ed.). Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Malczewski, D. and Popiel, E. (2008) 57Fe Mössbauer study of the oxidation state of iron in stilpnomelane from granite pegmatites in Poland. American Mineralogist, 93, 14041411.10.2138/am.2008.2719CrossRefGoogle Scholar
Marks, M., Vennemann, T., Siebel, W. and Markl, G. (2003) Quantification of magmatic and hydrothermal processes in a peralkaline syenite–alkali granite complex based on textures, phase equilibria, and stable and radiogenic isotopes. Journal of Petrology, 44, 12471280.CrossRefGoogle Scholar
Marks, M., Halama, R., Wenzel, T. and Markl, G. (2004) Trace element variations in clinopyroxene and amphibole from alkaline to peralkaline syenites and granites: Implications for mineral–melt trace-element partitioning. Chemical Geology, 211, 185215.CrossRefGoogle Scholar
Marshall, A.S., MacDonald, R., Rogers, N.W., Fitton, J.G., Tindle, A.G., Nejbert, K. and Hinton, R.W. (2009) Fractionation of peralkaline silicic magmas: The greater Olkaria volcanic complex, Kenya Rift Valley. Journal of Petrology, 50, 323359.CrossRefGoogle Scholar
Martins, F.A.G., de Andrade e Silva, A.C.G. and de Oliveira, M.C.B. (2004) Petrografia, petroquimica e metalogenia do Granito Serra do Paratiu, Cananeia, Estado de Sao Paulo. Boletim Paranaense de Geociências, 54, 1939.CrossRefGoogle Scholar
Mason, R.A. (1992) Models of order and iron–fluorine avoidance in biotite. The Canadian Mineralogist, 30, 343354.Google Scholar
McDonough, W.F. and Sun, S. (1995) The composition of the Earth. Chemical Geology, 120, 223253.CrossRefGoogle Scholar
Molina, J.F., Moreno, J.A., Castro, A., Rodríguez, C. and Fershtater, G.B. (2015) Calcic amphibole thermobarometry in metamorphic and igneous rocks: New calibrations based on plagioclase/amphibole Al–Si partitioning and amphibole/liquid Mg partitioning. Lithos, 232, 286305.10.1016/j.lithos.2015.06.027CrossRefGoogle Scholar
Moreno, J.A., Molina, J.F., Montero, P., Abu Anbar, M., Scarrow, J.H., Cambeses, A. and Bea, F. (2014) Unravelling sources of A-type magmas in juvenile continental crust: Constraints from compositionally diverse Ediacaran post-collisional granitoids in the Katerina Ring Complex, southern Sinai, Egypt. Lithos, 192–195, 5685.CrossRefGoogle Scholar
Mori, P.E., Reeves, S., Correia, C.T. and Haukka, M. (1999) Development of a fused glass disc XRF facility and comparison with the pressed powder pellet technique at Instituto de Geociencias, Sao Paulo University. Revista Brasileira de Geociências, 29, 441–6.CrossRefGoogle Scholar
Moshefi, P., Hosseinzadeh, M.R., Moayyed, M. and Lentz, D.R. (2018) Comparative study of mineral chemistry of four biotite types as geochemical indicators of mineralized and barren intrusions in the Sungun Porphyry Cu–Mo deposit, northwestern Iran. Ore Geology Reviews, 97, 120.10.1016/j.oregeorev.2018.05.003CrossRefGoogle Scholar
Munoz, J.L. (1984) F–OH and Cl–OH exchange in micas with applications to hydrothermal ore deposits. Pp. 469494 in: Carbonates (Reeder, R.J., editor). Reviews in Mineralogy, 11. Mineralogical Society of America, Washington DC.Google Scholar
Munoz, J.L. (1992) Calculation of HF and HCl fugacities from biotite compositions: revised equations. P. A221 in: Geological Society of America, Abstracts with Programs.Google Scholar
Mutch, E.J.F., Blundy, J.D., Tattitch, B.C., Cooper, F.J. and Brooker, R.A. (2016) An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer. Contributions to Mineralogy and Petrology, 171, 127.CrossRefGoogle Scholar
Nachit, H., Razafimahefa, N., Stussi, JM. and Carron, J.P. (1985) Composition chimique des biotites et typologie magmatiquc des granitoides. Comptes Rendus Hebdomadaires de I'Academiedes Sciences, 301, 813818.Google Scholar
Navarro, M.S., Andrade, S., Ulbrich, H., Gomes, C.B. and Girardi, V.A.V. (2008) The direct determination of rare earth elements in basaltic and related rocks using ICP–MS: Testing the efficiency of microwave oven sample decomposition procedures. Geostandards and Geoanalytical Research, 32, 167180.CrossRefGoogle Scholar
Oberti, R., Cannillo, E. and Toscani, G. (2012) How to name amphiboles after the IMA2012 report: Rules of thumb and a new PC program for monoclinic amphiboles. Periodico di Mineralogia, 81, 257267.Google Scholar
Oliveira, M.C.B. (1989) Petrologia do Maciço Granitico Mandira-SP. Master's Dissertation. University of Sao Paulo, Sao Paulo, Brazil, 203 pp.Google Scholar
Papoutsa, A. and Pe-piper, G. (2014) Geochemical variation of amphiboles in A–type granites as an indicator of complex magmatic systems: Wentworth pluton, Nova Scotia, Canada. Chemical Geology, 384, 120134.10.1016/j.chemgeo.2014.07.001CrossRefGoogle Scholar
Papoutsa, A., Pe-Piper, G. and Piper, D.J.W. (2016) Systematic mineralogical diversity in A-type granitic intrusions: Control of magmatic source and geological processes. Bulletin of the Geological Society of America, 128, 487501.CrossRefGoogle Scholar
Parsapoor, A., Khalili, M., Tepley, F. and Maghami, M. (2015) Mineral chemistry and isotopic composition of magmatic, re-equilibrated and hydrothermal biotites from Darreh–Zar porphyry copper deposit, Kerman (Southeast of Iran). Ore Geology Reviews, 66, 200218.CrossRefGoogle Scholar
Pe-Piper, G. (2007) Relationship of amphibole composition to host-rock geochemistry: the A-type gabbro–granite Wentworth pluton, Cobequid shear zone, eastern Canada. European Journal of Mineralogy, 19, 2938.CrossRefGoogle Scholar
Pearce, J.A., Harris, N.B.W. and Tindle, A.G. (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956983.CrossRefGoogle Scholar
Pham, C.T., Shellnutt, J.G., Yeh, M.W. and Iizuka, Y. (2020) An assessment of the magmatic conditions of late Neoproterozoic collisional and post-collisional granites from the Guéra Massif, South-Central Chad. Frontiers in Earth Science, 8, 117.CrossRefGoogle Scholar
Piilonen, P.C., McDonald, A.M., Poirier, G., Rowe, R. and Larsen, A.O. (2013) Mafic minerals of the alkaline pegmatites in the Larvik plutonic complex, Oslo Rift, Southern Norway. The Canadian Mineralogist, 51, 735770.CrossRefGoogle Scholar
Polzunenkov, G.O. (2018) Evaluation of P–T and $f_{{\rm O}_ 2}$ conditions of crystallization of monzonitic rocks of the Velitkenay Granite–Migmatite Massif (Arctic Chukotka) based on mineral thermobaro- and oxybarometry. Russian Journal of Pacific Geology, 12, 429442.CrossRefGoogle Scholar
Rasmussen, K.L. and Mortensen, J.K. (2013) Magmatic petrogenesis and the evolution of (F:Cl:OH) fluid composition in barren and tungsten skarn-associated plutons using apatite and biotite compositions: Case studies from the northern Canadian Cordillera. Ore Geology Reviews, 50, 118142.CrossRefGoogle Scholar
Reguir, E.P., Chakhmouradian, A.R., Pisiak, L., Halden, N.M., Yang, P., Xu, C., Kynický, J. and Couëslan, C.G. (2012) Trace-element composition and zoning in clinopyroxene- and amphibole-group minerals: Implications for element partitioning and evolution of carbonatites. Lithos, 128–131, 2745.CrossRefGoogle Scholar
Rieder, M., Cavazzini, G., Yakonov, Y.S.D., Frank-kamenetskii, V.A., Gottardi, G., Guggenheim, S., Koval, P.V., Muller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J., Sassi, F.P., Takeda, H., Weiss, Z. and Wones, D.R. (1998) Nomenclature of the micas. The Canadian Mineralogist, 36, 4148.Google Scholar
Salazar-Naranjo, A.F. and Vlach, S.R.F. (2018) On the crystallization conditions of the Neoproterozoic, high-K calc-alkaline, Bragança Paulista-type magmatism, southern Brasília Orogen, SE Brazil. Brazilian Journal of Geology, 48, 631650.CrossRefGoogle Scholar
Sarjoughian, F., Kananian, A., Ahmadian, J. and Murata, M. (2015) Chemical composition of biotite from the Kuh-e Dom pluton, Central Iran: implication for granitoid magmatism and related Cu–Au mineralization. Arabian Journal of Geosciences, 8, 15211533.CrossRefGoogle Scholar
Scaillet, B. and Macdonald, R. (2001) Phase relations of peralkaline silicic magmas and petrogenetic implications. Journal of Petrology, 42, 825845.10.1093/petrology/42.4.825CrossRefGoogle Scholar
Shellnutt, J.G. and Iizuka, Y. (2011) Mineralogy from three peralkaline granitic plutons of the Late Permian Emeishan large igneous province (SW China): evidence for contrasting magmatic conditions of A-type granitoids. European Journal of Mineralogy, 23, 4561.CrossRefGoogle Scholar
Shimizu, K., Liang, Y., Sun, C., Jackson, C.R.M. and Saal, A.E. (2017) Parameterized lattice strain models for REE partitioning between amphibole and silicate melt. American Mineralogist, 102, 22542267.10.2138/am-2017-6110CrossRefGoogle Scholar
Siachoque, A. (2020) Main mafic and accessory mineralogy in granites and greisens from selected occurrences in the A-type Graciosa Province, S-SE Brazil, and petrological implications. Phd. Thesis, University of Sao Paulo, Sao Paulo, Brazil, 160 pp.Google Scholar
Siachoque, A., Garcia, R. and Vlach, S.R.F. (2020) Occurrence and composition of columbite-(Fe) in the reduced A-Type Desemborque pluton, Graciosa Province (S-SE Brazil). Minerals, 10, 411.CrossRefGoogle Scholar
Siahcheshm, K., Calagari, A.A., Abedini, A. and Lentz, D.R. (2012) Halogen signatures of biotites from the Maher-Abad porphyry copper deposit, Iran: Characterization of volatiles in syn- to post-magmatic hydrothermal fluids. International Geology Review, 54, 13531368.CrossRefGoogle Scholar
Siegel, K., Williams-Jones, A.E., and van Hinsberg, V.J. (2017) The amphiboles of the REE–rich A-type peralkaline Strange Lake pluton-fingerprints of magma evolution. Lithos, 288–289, 156174.CrossRefGoogle Scholar
Sørensen, H. (1997) The agpaitic rocks – an overview. Mineralogical Magazine, 61, 485498.CrossRefGoogle Scholar
Speer, J. (1984) Micas in igneous rocks. Pp. 299356 in: Micas (Bailey, S.W., editor). Reviews in Mineralogy, Vol. 13. Mineralogical Society of America, Washington DC.Google Scholar
Streckeisen, A. (1976) To each plutonic rock its proper name. Earth Science Reviews, 12, 133.CrossRefGoogle Scholar
Strong, D.F. and Taylor, R.P. (1984) Magmatic-subsolidus and oxidation trends in composition of amphiboles from silica-saturated peralkaline igneous rocks. TMPM Tschermaks Mineralogische und Petrographische Mitteilungen, 32, 211222.CrossRefGoogle Scholar
Tiepolo, M., Vannucci, R., Bottazzi, P., Oberti, R., Zanetti, A. and Foley, S. (2000) Partitioning of rare earth elements, Y, Th, U, and Pb between pargasite, kaersutite, and basanite to trachyte melts: Implications for percolated and veined mantle. Geochemistry, Geophysics, Geosystems, 1, https://doi.org/10.1029/2000GC000064CrossRefGoogle Scholar
Tiepolo, M., Oberti, R., Zanetti, A., Foley, S.F., Vannucci, R. and Foley, S.F. (2007) Trace-element partitioning between amphibole and silicate melt. Pp. 417452 in: Amphiboles: Crystal Chemistry, Occurrence, and Health Issues (Hawthorne, F.C., Oberti, R., Della Ventura, G., and Mottana, A., editors). Reviews in Mineralogy and Geochemistry, 67. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Vasyukova, O.V. and Williams-Jones, A.E. (2019) Tracing the evolution of a fertile REE granite by modelling amphibole-melt partitioning, the Strange Lake story. Chemical Geology, 514, 7989.CrossRefGoogle Scholar
Vilalva, F.C.J. and Vlach, S.R.F. (2014) Geology, petrography and geochemistry of the A-type granites from the Morro Redondo Complex (PR–SC), southern Brazil, Graciosa Province. Anais da Academia Brasileira de Ciências, 86, 85116.CrossRefGoogle Scholar
Vilalva, F.C.J., Vlach, S.R.F. and Simonetti, A. (2016) Chemical and O-isotope compositions of amphiboles and clinopyroxenes from A-type granites of the Papanduva Pluton, South Brazil: Insights into late- to post-magmatic evolution of peralkaline systems. Chemical Geology, 420, 186199.CrossRefGoogle Scholar
Vilalva, F.C.J., Simonetti, A. and Vlach, S.R.F. (2019) Insights on the origin of the Graciosa A-type granites and syenites (Southern Brazil) from zircon U–Pb geochronology, chemistry, and Hf and O isotope compositions. Lithos, 340–341, 2033.10.1016/j.lithos.2019.05.001CrossRefGoogle Scholar
Vlach, S.R.F., Siga, O., Harara, O.M.M., Gualda, G. A.R., Basei, M.A.S and Vilalva, F.C.J. (2011) Crystallization ages of the A-type magmatism of the Graciosa Province (Southern Brazil): Constraints from zircon U–Pb (ID–TIMS) dating of coeval K-rich gabbro–dioritic rocks. Journal of South American Earth Sciences, 32, 407415.CrossRefGoogle Scholar
Watson, E.B. and Harrison, T.M. (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64, 295304.CrossRefGoogle Scholar
Weber, W., Basei, M.A.S., Siga, O. Jr. and Sato, K. (2001) O magmatismo alcalino Neoproterozóico na Ilha do Cardoso, Sudeste do Estado de São Paulo. Geologia USP. Série Científica, 1, 115128.CrossRefGoogle Scholar
Whalen, J.B., Currie, K.L. and Chappell, B.W. (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95, 40741910.1007/BF00402202CrossRefGoogle Scholar
Wones, D.R. (1981) Mafic silicates as indicators of intensive variables in granitic magmas. Mining Geology, 31, 191212.Google Scholar
Wones, D.R. (1989) Significance of the assemblage titanite + magnetite + quartz in granitic rocks. American Mineralogist, 74, 744749.Google Scholar
Wood, B.J. and Blundy, J.D. (2014) Trace element partitioning: The influences of ionic radius, cation charge, pressure, and temperature. Pp. 421448 in: Treatise on Geochemistry (Holland, H.D. and Turekian, K.K., editors). Vol. 3, Second Edition. Elsevier Science.CrossRefGoogle Scholar
Xie, L., Wang, Z., Wang, R.-C., Zhu, J.C., Che, X., Gao, J. and Zhao, X. (2018) Mineralogical constraints on the genesis of W–Nb–Ta mineralization in the Laiziling granite (Xianghualing distric, south China). Ore Geology Reviews, 95, 695712.CrossRefGoogle Scholar
Yang, X.M. (2017) Estimation of crystallization pressure of granite intrusions. Lithos, 286–287, 324329.CrossRefGoogle Scholar
Yavuz, F., Kumral, M., Karakaya, N., Karakaya, M.T. and Yildirim, D.K. (2015) A Windows program for chlorite calculation and classification. Computers and Geosciences, 81, 101113.CrossRefGoogle Scholar
Zane, A., Sassi, R. and Guidotti, C.V. (1998) New data on metamorphic chlorite as a petrogenetic indicator mineral, with special regard to greenschist-facies rocks. The Canadian Mineralogist, 36, 713726.Google Scholar
Zang, W. and Fyfe, W.S. (1995) Chloritization of the hydrothermally altered bedrock at the Igarapé Bahia gold deposit, Carajás, Brazil. Mineralium Deposita, 30, 3038.CrossRefGoogle Scholar
Zhang, W., Lentz, D.R., Thorne, K.G. and Mcfarlane, C. (2016) Geochemical characteristics of biotite from felsic intrusive rocks around the Sisson Brook W–Mo–Cu deposit, west-central New Brunswick : An indicator of halogen and oxygen fugacity of magmatic systems. Ore Geology Reviews, 77, 8296.CrossRefGoogle Scholar
Zhu, C. and Sverjensky, D.A. (1991) Partitioning of F–Cl–OH between minerals and hydrothermal fluids. Geochimica et Cosmochimica Acta, 55, 18371858.CrossRefGoogle Scholar
Zhu, C. and Sverjensky, D.A. (1992) F–Cl–OH partitioning between biotite and apatite. Geochimica et Cosmochimica Acta, 56, 34353467.10.1016/0016-7037(92)90390-5CrossRefGoogle Scholar
Supplementary material: File

Siachoque et al. supplementary material

Siachoque et al. supplementary material

Download Siachoque et al. supplementary material(File)
File 297.8 KB