Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Strain analysis and engineering in halide perovskite photovoltaics

Abstract

Halide perovskites are a compelling candidate for the next generation of clean-energy-harvesting technologies owing to their low cost, facile fabrication and outstanding semiconductor properties. However, photovoltaic device efficiencies are still below practical limits and long-term stability challenges hinder their practical application. Current evidence suggests that strain in halide perovskites is a key factor in dictating device efficiency and stability. Here we outline the fundamentals of strain within halide perovskites relevant to photovoltaic applications and rationalize approaches to characterize the phenomenon. We examine recent breakthroughs in eliminating the adverse impacts of strain, enhancing both device efficiencies and operational stabilities. Finally, we discuss further challenges and outline future research directions for placing stress and strain studies at the forefront of halide perovskite research. An extensive understanding of strain in halide perovskites is needed, which would allow effective strain management and drive further enhancements in efficiencies and stabilities of perovskite photovoltaics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Definition and measurement of strain in halide perovskites.
Fig. 2: Origins of strain in halide perovskites.
Fig. 3: Effects of strain on halide perovskites.
Fig. 4: Strain engineering in halide perovskite photovoltaics.
Fig. 5: Workflow for unlocking the potential of strain in perovskite devices.

Similar content being viewed by others

References

  1. Kim, G. et al. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 370, 108–112 (2020).

    Article  CAS  Google Scholar 

  2. Saidaminov, M. I. et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 3, 648–654 (2018).

    Article  CAS  Google Scholar 

  3. Jones, T. W. et al. Lattice strain causes non-radiative losses in halide perovskites. Energy Environ. Sci. 12, 596–606 (2019).

    Article  CAS  Google Scholar 

  4. Chen, Y. et al. Strain engineering and epitaxial stabilization of halide perovskites. Nature 577, 209–215 (2020).

    Article  CAS  Google Scholar 

  5. Li, X., Luo, Y., Holt, M. V., Cai, Z. & Fenning, D. P. Residual nanoscale strain in cesium lead bromide perovskite reduces stability and shifts local luminescence. Chem. Mater. 31, 2778–2785 (2019).

    Article  CAS  Google Scholar 

  6. Chen, A., Yossef, M. & Zhang, C. Strain effect on the performance of amorphous silicon and perovskite solar cells. Sol. Energy 163, 243–250 (2018).

    Article  CAS  Google Scholar 

  7. Yang, C., Song, K., Xu, X., Yao, G. & Wu, Z. Strain dependent effect on power degradation of CIGS thin film solar cell. Sol. Energy 195, 121–128 (2020).

    Article  CAS  Google Scholar 

  8. Watson, B. L., Rolston, N., Printz, A. D. & Dauskardt, R. H. Scaffold-reinforced perovskite compound solar cells. Energy Environ. Sci. 10, 2500–2508 (2017).

    Article  CAS  Google Scholar 

  9. Yang, B. Stress, Strain, and Structural Dynamics (Elsevier, 2005).

  10. Sun, Y., Thompson, S. E. & Nishida, T. Strain Effect in Semiconductors: Theory and Device Applications (Springer Science & Business Media, 2009).

  11. Ramirez, C., Yadavalli, S. K., Garces, H. F., Zhou, Y. & Padture, N. P. Thermo-mechanical behavior of organic–inorganic halide perovskites for solar cells. Scr. Mater. 150, 36–41 (2018).

    Article  CAS  Google Scholar 

  12. Pecharsky, V. & Zavalij, P. Fundamentals of Powder Diffraction and Structural Characterization of Materials (Springer Science & Business Media, 2008).

  13. Tennyson, E. M., Doherty, T. A. S. & Stranks, S. D. Heterogeneity at multiple length scales in halide perovskite semiconductors. Nat. Rev. Mater. 4, 573–587 (2019).

    Article  CAS  Google Scholar 

  14. Robinson, I. & Harder, R. Coherent X-ray diffraction imaging of strain at the nanoscale. Nat. Mater. 8, 291–298 (2009).

    Article  CAS  Google Scholar 

  15. Rodenburg, J. M. Ptychography and related diffractive imaging methods. Adv. Imaging Electron Phys. 150, 87–184 (2008).

    Article  Google Scholar 

  16. Xue, D. J. et al. Regulating strain in perovskite thin films through charge-transport layers. Nat. Commun. 11, 1514 (2020).

    Article  CAS  Google Scholar 

  17. Zhao, J. et al. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci. Adv. 3, eaao5616 (2017).

    Article  CAS  Google Scholar 

  18. Zhang, B. et al. NiO/perovskite heterojunction contact engineering for highly efficient and stable perovskite solar cells. Adv. Sci. 7, 1903044 (2020).

    Article  CAS  Google Scholar 

  19. Zhang, C. C. et al. Perovskite films with reduced interfacial strains via a molecular-level flexible interlayer for photovoltaic application. Adv. Mater. 32, e2001479 (2020).

    Article  CAS  Google Scholar 

  20. Rolston, N. et al. Engineering stress in perovskite solar cells to improve stability. Adv. Energy Mater. 8, 1802139 (2018).

    Article  CAS  Google Scholar 

  21. Jiao, Y. et al. Strain engineering of metal halide perovskites on coupling anisotropic behaviors. Adv. Funct. Mater. 31, 2006243 (2021).

    Article  CAS  Google Scholar 

  22. Zheng, X. et al. Improved phase stability of formamidinium lead triiodide perovskite by strain relaxation. ACS Energy Lett. 1, 1014–1020 (2016).

    Article  CAS  Google Scholar 

  23. Howard, C. J. & Stokes, H. T. Group-theoretical analysis of octahedral tilting in perovskites. Acta Cryst. B 54, 782–789 (1998).

    Article  Google Scholar 

  24. Carpenter, M. A. et al. Structural evolution, strain and elasticity of perovskites at high pressures and temperatures. J. Mineral. Petrol. Sci. 101, 95–109 (2006).

    Article  CAS  Google Scholar 

  25. Carpenter, M. A., Becerro, A. I. & Seifert, F. Strain analysis of phase transitions in (Ca,Sr)TiO3 perovskites. Am. Mineral. 86, 348–363 (2001).

    Article  Google Scholar 

  26. Khachaturyan, A. G. Theory of Structural Transformations in Solids (Courier Corporation, 2013).

  27. Chou, C. C. & Wayman, C. M. Cubic to tetragonal martensitic transformation in lead titanate (PbTiO3) single crystals. Mater. Trans. JIM 33, 306–317 (1992).

    Article  CAS  Google Scholar 

  28. Bhadeshia, H. K. D. H. Martensite in Steels (Department of Materials Science & Metallurgy, Univ. Cambridge, 2020).

  29. Prakash, A. et al. Self-assembled periodic nanostructures using martensitic phase transformations. Nano Lett. 21, 1246–1252 (2021).

    Article  CAS  Google Scholar 

  30. Kim, D. et al. Light- and bias-induced structural variations in metal halide perovskites. Nat. Commun. 10, 444 (2019).

    Article  CAS  Google Scholar 

  31. Brennan, M. C., Draguta, S., Kamat, P. V. & Kuno, M. Light-induced anion phase segregation in mixed halide perovskites. ACS Energy Lett. 3, 204–213 (2018).

    Article  CAS  Google Scholar 

  32. Bischak, C. G. et al. Origin of reversible photoinduced phase separation in hybrid perovskites. Nano Lett. 17, 1028–1033 (2017).

    Article  CAS  Google Scholar 

  33. Muscarella, L. A. et al. Lattice compression increases the activation barrier for phase segregation in mixed-halide perovskites. ACS Energy Lett. 5, 3152–3158 (2020).

    Article  CAS  Google Scholar 

  34. Tsai, H. et al. Light-induced lattice expansion leads to high-efficiency perovskite solar cells. Science 360, 67–70 (2018).

    Article  CAS  Google Scholar 

  35. Rolston, N. et al. Comment on ‘Light-induced lattice expansion leads to high-efficiency perovskite solar cells’. Science 368, eaay8691 (2020).

    Article  CAS  Google Scholar 

  36. Jariwala, S. et al. Local crystal misorientation influences non-radiative recombination in halide perovskites. Joule 3, 3048–3060 (2019).

    Article  CAS  Google Scholar 

  37. Doherty, T. A. S. et al. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites. Nature 580, 360–366 (2020).

    Article  CAS  Google Scholar 

  38. Hytch, M. J., Putaux, J. L. & Thibault, J. Stress and strain around grain-boundary dislocations measured by high-resolution electron microscopy. Phil. Mag. 86, 4641–4656 (2006).

    Article  CAS  Google Scholar 

  39. Xiao, X. et al. Benign ferroelastic twin boundaries in halide perovskites for charge carrier transport and recombination. Nat. Commun. 11, 2215 (2020).

    Article  CAS  Google Scholar 

  40. Yang, W., Zhong, D., Shi, M., Qu, S. & Chen, H. Toward highly thermal stable perovskite solar cells by rational design of interfacial layer. iScience 22, 534–543 (2019).

    Article  CAS  Google Scholar 

  41. Zhu, C. et al. Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat. Commun. 10, 815 (2019).

    Article  CAS  Google Scholar 

  42. Feldmann, S. et al. Photodoping through local charge carrier accumulation in alloyed hybrid perovskites for highly efficient luminescence. Nat. Photon. 14, 123–128 (2020).

    Article  CAS  Google Scholar 

  43. Prasanna, R. et al. Band gap tuning via lattice contraction and octahedral tilting in perovskite materials for photovoltaics. J. Am. Chem. Soc. 139, 11117–11124 (2017).

    Article  CAS  Google Scholar 

  44. McKenna, K. P. Electronic properties of {111} twin boundaries in a mixed-ion lead halide perovskite solar absorber. ACS Energy Lett. 3, 2663–2668 (2018).

    Article  CAS  Google Scholar 

  45. Ghosh, D., Aziz, A., Dawson, J. A., Walker, A. B. & Islam, M. S. Putting the squeeze on lead iodide perovskites: pressure-induced effects to tune their structural and optoelectronic behavior. Chem. Mater. 31, 4063–4071 (2019).

    Article  CAS  Google Scholar 

  46. Du, Q. et al. Stacking effects on electron–phonon coupling in layered hybrid perovskites via microstrain manipulation. ACS Nano 14, 5806–5817 (2020).

    Article  CAS  Google Scholar 

  47. Dou, L. et al. Atomically thin two-dimensional organic–inorganic hybrid perovskites. Science 349, 1518–1521 (2015).

    Article  CAS  Google Scholar 

  48. Walsh, A. & Stranks, S. D. Taking control of ion transport in halide perovskite solar cells. ACS Energy Lett. 3, 1983–1990 (2018).

    Article  CAS  Google Scholar 

  49. Yang, T. Y., Gregori, G., Pellet, N., Gratzel, M. & Maier, J. The significance of ion conduction in a hybrid organic–inorganic lead-iodide-based perovskite photosensitizer. Angew. Chem. Int. Ed. 54, 7905–7910 (2015).

    Article  CAS  Google Scholar 

  50. Hutter, E. M. et al. Thermodynamic stabilization of mixed-halide perovskites against phase segregation. Cell Rep. Phys. Sci. 1, 100120 (2020).

    Article  CAS  Google Scholar 

  51. Voorhees, P. W. & Johnson, W. C. The thermodynamics of elastically stressed crystals. Solid State Phys. 59, https://doi.org/10.1016/S0081-1947(04)80003-1 (2004).

  52. Cahn, J. W. Coherent fluctuations and nucleation in isotropic solids. Acta Metall. 10, 907–913 (1962).

    Article  CAS  Google Scholar 

  53. Cook, H. E. & de Fontaine, D. On the elastic free energy of solid solutions—I. Microscopic theory. Acta Metall. 17, 915–924 (1969).

    Article  CAS  Google Scholar 

  54. Heimann, R. B. Classic and Advanced Ceramics: from Fundamentals to Applications (Wiley–VCH, 2010).

  55. Wang, H. et al. Interfacial residual stress relaxation in perovskite solar cells with improved stability. Adv. Mater. 31, 1904408 (2019).

    Article  CAS  Google Scholar 

  56. Kong, L. et al. Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic–inorganic trihalide perovskites. Proc. Natl Acad. Sci. USA 113, 8910–8915 (2016).

    Article  CAS  Google Scholar 

  57. Ong, K. P., Goh, T. W., Xu, Q. & Huan, A. Structural evolution in methylammonium lead iodide CH3NH3PbI3. J. Mater. Chem. A 119, 11033–11038 (2015).

    CAS  Google Scholar 

  58. Osherov, A. et al. The impact of phase retention on the structural and optoelectronic properties of metal halide perovskites. Adv. Mater. 28, 10757–10763 (2016).

    Article  CAS  Google Scholar 

  59. Stavrakas, C. et al. Influence of grain size on phase transitions in halide perovskite films. Adv. Energy Mater. 9, 1901883 (2019).

    Article  CAS  Google Scholar 

  60. Freund, L. B. & Suresh, S. Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge Univ. Press, 2004).

  61. Rolston, N. et al. Mechanical integrity of solution-processed perovskite solar cells. Extrem. Mech. Lett. 9, 353–358 (2016).

    Article  Google Scholar 

  62. Chen, H. et al. Flexible optoelectronic devices based on metal halide perovskites. Nano Res. 13, 1997–2018 (2020).

    Article  CAS  Google Scholar 

  63. Wang, K. et al. Isothermally crystallized perovskites at room-temperature. Energy Environ. Sci. 13, 3412–3422 (2020).

    Article  CAS  Google Scholar 

  64. Dewi, H. A. et al. Excellent intrinsic long-term thermal stability of co-evaporated MAPbI3 solar cells at 85 °C. Adv. Funct. Mater. 31, 2100557 (2021).

    Article  CAS  Google Scholar 

  65. Chiang, Y.-H., Anaya, M. & Stranks, S. D. Multisource vacuum deposition of methylammonium-free perovskite solar cells. ACS Energy Lett. 5, 2498–2504 (2020).

    Article  CAS  Google Scholar 

  66. Saliba, M. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–209 (2016).

    Article  CAS  Google Scholar 

  67. Lee, J.-W. et al. 2D perovskite stabilized phase-pure formamidinium perovskite solar cells. Nat. Commun. 9, 3021 (2018).

    Article  CAS  Google Scholar 

  68. Rolston, N. et al. Effect of cation composition on the mechanical stability of perovskite solar cells. Adv. Energy Mater. 8, 1702116 (2018).

    Article  CAS  Google Scholar 

  69. Roose, B., Dey, K., Chiang, Y.-H., Friend, R. H. & Stranks, S. D. Critical assessment of the use of excess lead iodide in lead halide perovskite solar cells. J. Phys. Chem. Lett. 11, 6505–6512 (2020).

    Article  CAS  Google Scholar 

  70. Li, X. et al. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nat. Chem. 7, 703–711 (2015).

    Article  CAS  Google Scholar 

  71. Wu, J. et al. A simple way to simultaneously release the interface stress and realize the inner encapsulation for highly efficient and stable perovskite solar cells. Adv. Funct. Mater. 29, 1905336 (2019).

    Article  CAS  Google Scholar 

  72. Cao, J. et al. Enhanced performance of planar perovskite solar cells induced by van der Waals epitaxial growth of mixed perovskite films on WS2 flakes. Adv. Funct. Mater. 30, 2002358 (2020).

    Article  CAS  Google Scholar 

  73. Lu, C. & Tang, L. Comment on ‘Spin coating epitaxial films’. Science 365, eaay3894 (2019).

  74. Tu, Q. et al. Out-of-plane mechanical properties of 2D hybrid organic–inorganic perovskites by nanoindentation. ACS Appl. Mater. Interfaces 10, 22167–22173 (2018).

    Article  CAS  Google Scholar 

  75. Zhang, C. et al. Fabrication strategy for efficient 2D/3D perovskite solar cells enabled by diffusion passivation and strain compensation. Adv. Energy Mater. 10, 2002004 (2020).

    Article  CAS  Google Scholar 

  76. Lei, Y. et al. A fabrication process for flexible single-crystal perovskite devices. Nature 583, 790–795 (2020).

    Article  CAS  Google Scholar 

  77. Rothmann, M. U. et al. Atomic-scale microstructure of metal halide perovskite. Science 370, eabb5940 (2020).

  78. Watson, B. L. et al. Cross-linkable, solvent-resistant fullerene contacts for robust and efficient perovskite solar cells with increased JSC and VOC. ACS Appl. Mater. Interfaces 8, 25896–25904 (2016).

    Article  CAS  Google Scholar 

  79. Dai, Z. et al. Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability. Science 372, 618–622 (2021).

    Article  CAS  Google Scholar 

  80. Dong, Q. et al. Flexible perovskite solar cells with simultaneously improved efficiency, operational stability, and mechanical reliability. Joule 5, 1587–1601 (2021).

    Article  CAS  Google Scholar 

  81. Dong, Q. et al. Interpenetrating interfaces for efficient perovskite solar cells with high operational stability and mechanical robustness. Nat. Commun. 12, 973 (2021).

    Article  CAS  Google Scholar 

  82. Sun, S., Fang, Y., Kieslich, G., White, T. J. & Cheetham, A. K. Mechanical properties of organic–inorganic halide perovskites, CH3NH3PbX3 (X = I, Br and Cl), by nanoindentation. J. Mater. Chem. A 3, 18450–18455 (2015).

    Article  CAS  Google Scholar 

  83. Glazer, A. M. The classification of tilted octahedra in perovskites. Acta Cryst. B 28, 3384–3392 (1972).

    Article  CAS  Google Scholar 

  84. Bechtel, J. S. & Van der Ven, A. Octahedral tilting instabilities in inorganic halide perovskites. Phys. Rev. Mater. 2, 025401 (2018).

    Article  CAS  Google Scholar 

  85. Filip, M. R., Eperon, G. E., Snaith, H. J. & Giustino, F. Steric engineering of metal-halide perovskites with tunable optical band gaps. Nat. Commun. 5, 5757 (2014).

    Article  CAS  Google Scholar 

  86. Boyd, C. C., Cheacharoen, R., Leijtens, T. & McGehee, M. D. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119, 3418–3451 (2019).

    Article  CAS  Google Scholar 

  87. Bush, K. A. et al. Controlling thin-film stress and wrinkling during perovskite film formation. ACS Energy Lett. 3, 1225–1232 (2018).

    Article  CAS  Google Scholar 

  88. Yadavalli, S. K., Dai, Z., Zhou, H., Zhou, Y. & Padture, N. P. Facile healing of cracks in organic–inorganic halide perovskite thin films. Acta Mater. 187, 112–121 (2020).

    Article  CAS  Google Scholar 

  89. Dai, Z. et al. Effect of grain size on the fracture behavior of organic–inorganic halide perovskite thin films for solar cells. Scr. Mater. 185, 47–50 (2020).

    Article  CAS  Google Scholar 

  90. Birkholz, M. Thin Film Analysis by X-ray Scattering (Wiley-VCH, 2006).

  91. Ma, S. et al. Strain-mediated phase stabilization: a new strategy for ultrastable α-CsPbI3 perovskite by nanoconfined growth. Small 15, 1900219 (2019).

    Article  CAS  Google Scholar 

  92. Steele, J. A. et al. Thermal unequilibrium of strained black CsPbI3 thin films. Science 365, 679–684 (2019).

    Article  CAS  Google Scholar 

  93. Kum, H. et al. Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices. Nat. Electron. 2, 439–450 (2019).

    Article  CAS  Google Scholar 

  94. Narayan, J. & Larson, B. C. Domain epitaxy: a unified paradigm for thin film growth. J. Appl. Phys. 93, 278–285 (2002).

    Article  CAS  Google Scholar 

  95. Nishimura, K. et al. Relationship between lattice strain and efficiency for Sn-perovskite solar cells. ACS Appl. Mater. Interfaces 11, 31105–31110 (2019).

    Article  CAS  Google Scholar 

  96. Kapil, G. et al. Strain relaxation and light management in tin–lead perovskite solar cells to achieve high efficiencies. ACS Energy Lett. 4, 1991–1998 (2019).

    Article  CAS  Google Scholar 

  97. Li, H. & Zhang, W. Perovskite tandem solar cells: from fundamentals to commercial deployment. Chem. Rev. 120, 9835–9950 (2020).

    Article  CAS  Google Scholar 

  98. Knight, A. J. & Herz, L. M. Preventing phase segregation in mixed-halide perovskites: a perspective. Energy Environ. Sci. 13, 2024–2046 (2020).

    Article  CAS  Google Scholar 

  99. Grüninger, H. et al. Microscopic (dis)order and dynamics of cations in mixed FA/MA lead halide perovskites. J. Phys. Chem. C 125, 1742–1753 (2021).

    Article  CAS  Google Scholar 

  100. Kodur, M. et al. X-ray microscopy of halide perovskites: techniques, applications, and prospects. Adv. Energy Mater. 10, 1903170 (2020).

    Article  CAS  Google Scholar 

  101. Wu, C., Chen, K., Guo, D. Y., Wang, S. L. & Li, P. G. Cations substitution tuning phase stability in hybrid perovskite single crystals by strain relaxation. RSC Adv. 8, 2900–2905 (2018).

    Article  CAS  Google Scholar 

  102. Szostak, R. et al. Nanoscale mapping of chemical composition in organic-inorganic hybrid perovskite films. Sci. Adv. 5, eaaw6619 (2019).

    Article  CAS  Google Scholar 

  103. Liu, Y. et al. Chemical nature of ferroelastic twin domains in CH3NH3PbI3 perovskite. Nat. Mater. 17, 1013–1019 (2018).

    Article  CAS  Google Scholar 

  104. Newton, M. C., Leake, S. J., Harder, R. & Robinson, I. K. Three-dimensional imaging of strain in a single ZnO nanorod. Nat. Mater. 9, 120–124 (2010).

    Article  CAS  Google Scholar 

  105. Li, Y. et al. Unravelling degradation mechanisms and atomic structure of organic–inorganic halide perovskites by cryo-EM. Joule 3, 2854–2866 (2019).

    Article  CAS  Google Scholar 

  106. Rothmann, M. U., Li, W., Etheridge, J. & Cheng, Y.-B. Microstructural characterisations of perovskite solar cells—from grains to interfaces: techniques, features, and challenges. Adv. Energy Mater. 7, 1700912 (2017).

    Article  CAS  Google Scholar 

  107. Zhou, Y., Sternlicht, H. & Padture, N. P. Transmission electron microscopy of halide perovskite materials and devices. Joule 3, 641–661 (2019).

    Article  CAS  Google Scholar 

  108. Hong, K.-H., Kim, J., Lee, S.-H. & Shin, J. K. Strain-driven electronic band structure modulation of Si nanowires. Nano Lett. 8, 1335–1340 (2008).

    Article  CAS  Google Scholar 

  109. Manzeli, S., Allain, A., Ghadimi, A. & Kis, A. Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2. Nano Lett. 15, 5330–5335 (2015).

    Article  CAS  Google Scholar 

  110. Si, C., Sun, Z. & Liu, F. Strain engineering of graphene: a review. Nanoscale 8, 3207–3217 (2016).

    Article  CAS  Google Scholar 

  111. Jia, M. Z. et al. Exploring ion migration in Li2MnSiO4 for Li-ion batteries through strain effects. RSC Adv. 7, 26089–26096 (2017).

    Article  CAS  Google Scholar 

  112. Leppert, L., Reyes-Lillo, S. E. & Neaton, J. B. Electric field- and strain-induced Rashba effect in hybrid halide perovskites. J. Phys. Chem. Lett. 7, 3683–3689 (2016).

    Article  CAS  Google Scholar 

  113. Stranks, S. D. & Plochocka, P. The influence of the Rashba effect. Nat. Mater. 17, 381–382 (2018).

    Article  CAS  Google Scholar 

  114. Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016).

    Article  CAS  Google Scholar 

  115. Shu, L. et al. Photoflexoelectric effect in halide perovskites. Nat. Mater. 19, 605–609 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

W.Z. acknowledges UK Engineering and Physical Sciences Research Council (EPSRC) New Investigator Award (2018; EP/R043272/1) and Newton Advanced Fellowship (192097) for financial support. S.D.S. acknowledges the support from the Royal Society and Tata Group (UF150033), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (HYPERION, grant agreement no. 756962) and EPSRC under grant reference EP/R023980/1. D. Liu acknowledges China Scholarship Council (CSC, no. 201908310074) for financial support. D. Luo and Z.-H.L. acknowledge the Natural Science and Engineering Research Council of Canada. A.N.I. acknowledges a scholarship from the British Spanish Society. K.W.P.O. acknowledges funding from an EPSRC studentship. T.A.S.D. acknowledges support of a National University of Ireland (NUI) Travelling Studentship. We acknowledge M. Anaya for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

D. Liu, D. Luo, A.N.I. and K.W.P.O. contributed equally to conceiving and writing the first draft. All authors contributed to the discussion of content and revisions of the manuscript.

Corresponding authors

Correspondence to Samuel D. Stranks or Wei Zhang.

Ethics declarations

Competing interests

S.D.S. is a co-founder of Swift Solar, Inc. All other authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Luo, D., Iqbal, A.N. et al. Strain analysis and engineering in halide perovskite photovoltaics. Nat. Mater. 20, 1337–1346 (2021). https://doi.org/10.1038/s41563-021-01097-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01097-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing