Skip to main content
Log in

Spectroscopic, microscopic and antibacterial studies of green synthesized Ag nanoparticles at room temperature using Psidium guajava leaf extract

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Spectroscopic, microscopic and size dependent antibacterial efficiency of Ag nanoparticles (NPs) synthesized by green approach were studied. Five different samples of Ag NPs having average sizes in the range of ∼14 to ∼21 nm were synthesized using Psidium guajava (Guava) leaf extract (0.25 ml, 0.5 ml, 1 ml, 2 ml, 4 ml, respectively) in 50 ml aqueous AgNO3 solution of molar concentration of 1 mM. The sizes of the NPs were found to increase with increase in concentration of leaf extract. Such increase in NP size is mainly due to the increase in biomolecules, in the solution, that transforms the Ag ions to Ag NPs. Spectroscopic and microscopic properties of as-synthesized Ag NPs were obtained by characterizing the prepared samples using suitable and affordable methodologies. These Ag NPs showed significant size dependent antibacterial effect. The minimum inhibitory concentration and minimum lethal concentration of the sample showing highest zone of inhibition against Escherichia coli (E. coli) was determined as 40 µg/ml and 80 µg/ml, respectively. Percentage of survivability was also measured through viable plate count. The smallest Ag NPs (average size ∼14 nm) considered here produced the best antibacterial activity against the tested E. coli compared to Ag NPs having larger sizes at identical bacterial concentration. The enhanced antibacterial efficiency for smaller Ag NPs is mainly due to larger surface area-to-volume ratio of smaller NPs. The probable mechanism of bio-reduction of silver ions and formation of Ag NPs has also been well explained, which justifies the result obtained in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Prabhu and E. K. Poulose, Int. Nano Lett., 2, 32 (2012).

    Article  Google Scholar 

  2. S. Ghosh, S. Patil, M. Ahire, R. Kitture, S. Kale, K. Pardesi, S. S. Cameotra, J. Bellare, D. D. Dhavale, A. Jabgunde and B. A. Chopade, Int. J. Nanomedicine, 7, 483 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. H. H. Lara, E. N. Garza-Trevino, L. Ixtepan-Turrent and D. K. Singh, J Nanobiotechnology, 9, 30 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. M. Rai, A. Yadav and A. Gade, Biotechnol. Adv., 27, 76 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. H. J. Klasen, Burns, 26, 17 (2000).

    Google Scholar 

  6. I. Sondi and B. Salopek-Sondi, J. Colloid Interface Sci., 275, 177 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. H. H. Lara, N. V. Ayala-Nunez, L. Ixtepan-Turrent and C. Rodriguez-Padilla, J. Nanobiotechnology, 8, 1 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. M. C. Daniel and D. Astruc, Chem. Rev., 104, 293 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. S. Lee, E. J. Cha, K. Park, S. Y. Lee, J. K. Hong, I. C. Sun, S. Kim, K. Choi, I. C. Kwon, K. Kim and C. H. Ahn, Angew. Chem. Int. Ed., 47, 2804 (2008).

    Article  CAS  Google Scholar 

  10. A. H. A. Kelkawi, A. A. Kajani and A. K Bordbar, IET Nanobiotechnol., 11, 370 (2017)

    Article  PubMed  Google Scholar 

  11. Z. Muhammad, A. Raza, S. Ghafoor, A. Naeem, S. S. Naz, S. Riaz, W. Ahmed and N. F. Rana, Eur. J. Pharm. Sci., 91, 251 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. S. Agnihotri, S. Mukherji and S. Mukherji, RSC Adv., 4, 3974 (2014).

    Article  CAS  Google Scholar 

  13. R. Dobrucka and J. Długaszewska, Indian J. Microbiol., 55, 168 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Y. Jeong, D. W. Lim and J. Choi, Adv. Mater. Sci. Eng., 2014, 763807 (2014).

    Article  Google Scholar 

  15. K. Vasilev, Coatings, 9, 654 (2019).

    Article  CAS  Google Scholar 

  16. M. Casolaro, I. Casolaro, J. Akimoto, M. Ueda, M. Ueki and Y. Ito, Gels, 4, 42 (2018).

    Article  PubMed Central  Google Scholar 

  17. O. Kvitek, E. Mutylo, B. Vokata, P. Ulbrich, D. Fajstavr, A. Reznickova and V. Svorcik, Coatings, 10, 1046 (2020).

    Article  CAS  Google Scholar 

  18. L. Petrova, O. Kozlova, E. Vladimirtseva, S. Smirnova, A. Lipina and O. Odintsova, Coatings, 11, 159 (2021).

    Article  CAS  Google Scholar 

  19. S. Mahmud, M. Z. Sultana, M. N. Pervez, M. A. Habib and H. H. Liu, Fibers, 5, 35 (2017).

    Article  Google Scholar 

  20. S. Mukherji, S. Bharti, G. Shukla and S. Mukherji, Phys. Sci. Rev., 4, 20170082 (2018).

    Google Scholar 

  21. A. Shahzad, W. S. Kim and T. Yu, RSC Adv., 5, 28652 (2015).

    Article  CAS  Google Scholar 

  22. A. Shahzad, M. Chung, T. Yu and W. S. Kim, Chem. Asian J., 10, 2512 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. H. J. Han, T. Yu, W. S. Kim and S. H. Im, J. Cryst. Growth, 469, 46 (2017).

    Article  Google Scholar 

  24. F. Hussain, S. M. Shaban, J. Kim and D. H. Kim, Korean J. Chem. Eng., 36, 988 (2019).

    Article  CAS  Google Scholar 

  25. K. Seku, B. R. Gangapuram, B. Pejjai, K. K. Kadimpati and N. Golla, J. Nanostruct. Chem., 8, 179 (2018).

    Article  CAS  Google Scholar 

  26. M. R. Khodadadi, M. E. Olya and A. Naeimi, Korean J. Chem. Eng., 33, 2018 (2016).

    Article  CAS  Google Scholar 

  27. P. K Kuiri and D. P. Mahapatra, Adv. Sci. Eng., 6, 290 (2012).

    Article  Google Scholar 

  28. P. K Kuiri, J. Appl. Phys., 108, 054301 (2010).

    Article  Google Scholar 

  29. P. Raveendran, J. Fu and S. L. Wallen, J. Am. Chem. Soc., 125, 13940 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. P. Roy, B. Das, A. Mohanty and S. Mohapatra, Appl. Nanosci., 7, 843 (2017).

    Article  CAS  Google Scholar 

  31. J. M. Wiley, L. M. Sherwood and C. J. Woolverton, Prescott’s microbiology, 9th Ed., McGraw Hill International (2013).

  32. T. Ghosh, A. Chottopadhyay, A. C. Mandal, S. Pramanik and P. K. Kuiri, Chin. J. Phys., 68, 835 (2020).

    Article  CAS  Google Scholar 

  33. M. Goudarzi, N. Mir, M. Mousavi-Kamazani, S. Bagheri and M. Salavati-Niasari, Sci. Rep., 6, 32539 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. J. Siddhant and M. S. Mehata, Sci. Rep., 7, 15867 (2017).

    Article  Google Scholar 

  35. A. L. Patterson, Phys. Rev., 56, 978 (1939).

    Article  CAS  Google Scholar 

  36. S. Pramanik, T. Ghosh, M. Ghosh, S. C. De and P. K. Kuiri, Adv. Sci. Eng. Med., 9, 414 (2017).

    Article  CAS  Google Scholar 

  37. S. Mukherjee, S. Pramanik, S. Das, S. Chakraborty, R. Nath and P. K. Kuiri, J. Alloys Compd., 814, 152015 (2020).

    Article  CAS  Google Scholar 

  38. H. C. Ong, A. X. E. Zhu and G. T. Du, Appl. Phys. Lett., 80, 941 (2002).

    Article  CAS  Google Scholar 

  39. M. C. G. Toro, J. P. Schlegel and C. H. C. Giraldo, Chemistry Select, 3, 8936 (2018).

    CAS  Google Scholar 

  40. W. I. A. Fattah, A. S. M. Sallam, N. A. Attawa, E. Salama, A. M. Maghraby and G. W. Ali, Mater. Res. Express., 1, 035024 (2014).

    Article  Google Scholar 

  41. A. Verma and M. S. Mehata, J. Radiat. Res. Appl. Sc., 9, 109 (2016).

    CAS  Google Scholar 

  42. P. K. Kuiri and S. Pramanik, J. Appl. Phys., 123, 154302 (2018).

    Article  Google Scholar 

  43. Z. Parang, A. Keshavarz, S. Farahi, S. M. Elahi, M. Ghoranneviss and S. Parhoodeh, Scientia Iranica, 19, 843 (2012).

    Article  Google Scholar 

  44. S. Pramanik, S. Mondal, A. C. Mandal, S. Mukherjee, S. Das, T. Ghosh, R. Nath, M. Ghosh and P. K. Kuiri, J. Alloys Compd., 849, 156684 (2020).

    Article  CAS  Google Scholar 

  45. P. R. Sougandhi, M. Reddeppa, S. S. Harini, T. S. Rani and R. Gangadhara, J. of Drug Delivery and Therapeutics, 8, 301 (2018).

    Article  CAS  Google Scholar 

  46. S. Hemadi and S. A. Shojaosadati, Polyhedron, 171, 172 (2019).

    Article  Google Scholar 

  47. A. Jayakumar and R. K. Vedhaiyan, Korean J. Chem. Eng., 36, 1869 (2019).

    Article  CAS  Google Scholar 

  48. Y. Qing, L. Cheng R. Li, G. Liu, Y. Zhang, X. Tang, J. Wang, H. Liu and Y. Qin, Int. J. Nanomedicine, 13, 3311 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. J. Virkutyte and R. S. Varma, Sustainable preparation of metal nanoparticles, Royal Society of Chemistry, Cambridge (2012).

    Google Scholar 

  50. A. Roy, O. Bulut, S. Some, A. K. Mandal and M. D. Yilmaz, RSC Adv., 9, 2673 (2019).

    Article  CAS  Google Scholar 

  51. N. Durán, M. Durán, M. B. de Jesus, A. B. Seabra, W. J. Fávaro and G. Nakazato, Nanomedicine: Nanotechnology, Biology and Medicine, 12, 789 (2016).

    Article  Google Scholar 

  52. U. K. Parashar, V. Kumar, T. Bera, P. S. Saxena, G. Nath, S. K. Srivastava, R. Giri and A. Srivastava, Nanotechnology, 22, 415104 (2011).

    Article  PubMed  Google Scholar 

  53. D. Bose and S. Chatterjee, Appl. Nanosci., 6, 895 (2016).

    Article  CAS  Google Scholar 

  54. V. V. Makarov, A. J. Love, O. V. Sinitsyna, S. S. Makarova, I. V. Yaminsky, M. E. Taliansky and N. O. Kalinina, Acta Nature, 6, 35 (2014).

    Article  CAS  Google Scholar 

  55. N. Ahmad, S. Sharma, M. K. Alam, V. N. Singh, S. F. Shamsi, B. R. Mehta and A. Fatma, Colloids Surf. B: Biointerfaces, 81, 81 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. P. Trouillas, P. Marsal, D. Siri, R. Lazzaroni and J. L. Duroux, Food Chem., 97, 679 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the University Science Instrumentation Centre of the University of Burdwan for extending the SEM, EDS, and TEM facilities.

Funding

No funds or grants were received for the present study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tatan Ghosh or Probodh Kumar Kuiri.

Ethics declarations

Authors declare that this manuscript is compliance with scientific ethical standards. There are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Additional information

Conflict of Interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Data Availability

The authors declare that all the data supporting the findings of this study are available within the article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, T., Chattopadhyay, A., Mandal, A.C. et al. Spectroscopic, microscopic and antibacterial studies of green synthesized Ag nanoparticles at room temperature using Psidium guajava leaf extract. Korean J. Chem. Eng. 38, 2549–2559 (2021). https://doi.org/10.1007/s11814-021-0918-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0918-x

Keywords

Navigation