Skip to main content
Log in

Recent advances in the development of nanocomposites for effective removal of pesticides from aqueous stream

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Pesticides play a significant key role in the agriculture sector. In India, there is a sharp increase in pesticides consumption in recent years, leading to severe implications. Due to the rapid use of pesticides, there is residue in the food, which leads to poor effects on human health. Furthermore, the discharge of various pesticides into water bodies from the industries and agricultural activities leads to environmental concerns. Because of their toxicity, persistent nature, and bioaccumulation potential, it is essential to remove pesticides from water. Nanoparticles are tiny particles whose size ranges from 1 to 100 nm. Nanomaterials have a large surface area, a large number of active sites, and high reactivity. Therefore, nanotechnology is a fast, efficient, and economical process. Nanotechnology plays an influential role in the removal of various pesticides from water and wastewater. In recent years, various nanomaterials, such as TiO2, ZVI, Zn, and rGO (reduced graphene oxide), CNTs (carbon nanotubes), and polymer-supported nanomaterials are widely used for the removal of pesticides from water. In this review, detailed information about various pesticides and their removal with the help of nanocomposites has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

source: https://chemistry-europe.onlinelibrary.wiley.com/cms/asset/8897c1c2-3902-4650-babd-0f70bb5065fd/cctc201902081-fig-0012-m.jpg)

Similar content being viewed by others

Abbreviations

BHC:

Benzene hexachloride

CNTs:

Carbon nanotubes

DDT:

Dichlorodiphenyltrichloroethane

FeFNS:

Iron fluoride nitrogen sulfur complex

Fe2O3 :

Iron oxide

FeOOH:

Iron oxyhydroxide

IPM:

Integrated pest management

MWCNT:

Multiwalled carbon nanotube

RGO:

Reduced graphene oxide

Gr:

Graphite

C0 :

Initial concentration

nZVI:

Nano zero valent iron

TiO2 :

Titanium dioxide

SDS:

Sodium dodecyl sulfate

EDCs:

Endocrine-disrupting chemical

P25:

A type of photoreceptor

P3TA:

Poly 3-Thenoic acid

PANI:

Polyaniline

PMS:

Peroxymonosulfate

PS:

Persulfate

References

  • Abdelhaleem A, Chu W (2019) Insights into peroxymonosulfate activation for carbofuran degradation under visible LED via a double-component photocatalyst of Fe (III) impregnated N-doped TiO2. Chemosphere 237:124487. https://doi.org/10.1016/j.chemosphere.2019.124487

  • Abd El-Aziz,  AR, Al-Othman MR, Mahmoud MA (2018) Degradation of DDT by gold nanoparticles synthesised using Lawsonia inermis for environmental safety. Biotechnology & Biotechnological Equipment 1–9. https://doi.org/10.1080/13102818.2018.1502051

  • Ahmadifard T, Heydari R, Tarrahi MJ, Khorramabadi GS (2019) Photocatalytic degradation of diazinon in aqueous solutions using immobilized MgO nanoparticles on concrete. Int J Chem React Eng 20180154. https://doi.org/10.11515/ijcre-2018-154

  • Ali I, ALOthman ZA, Al-Warthan A (2016) Sorption, kinetics and thermodynamics studies of atrazine herbicide removal from water using iron nano-composite material. Int J Environ Sci Technol 13:733–742

  • Asgari G, Seidmohammadi A, Esrafili A, Noori Sepehr M, Jafarinia M (2020) The catalytic ozonation of diazinon using nano-MgO@CNT@Gr as a new heterogenous catalyst: the optimization of effective factors by response surface methodology. RSC Advances 10:7718–7731

  • Agency for toxic substances and disease registry, U.S. Department of Health and Human Services. Toxicologic profile for alpha-, beta, gamma- and delta-hexachlorocyclohenxane. August 2005

  • Alkayal NS, Hussein MA (2019) Photocatalytic degradation of atrazine under visible light using novel Ag@Mg4Ta2O9 nanocomposites. Scientific Reports 9:7470. https://doi.org/10.1038/s41598-019-43915-y

  • Arienzo M, Masuccio AA, Ferrara L (2013) Evaluation of sediment contamination by heavy metals, organochlorinated pesticides, and polyaromatic hydrocarbons in the Berre coastal lagoon (Southeast France). Arch Environ Contam Toxicol 65:396–406

    CAS  Google Scholar 

  • Aragay G, Pino F, Merkoçi A (2012) Nanomaterials for sensing and destroying pesticides. Chem Rev 112(10):5317–5338. https://doi.org/10.1021/cr300020c

    Article  CAS  Google Scholar 

  • Atwan AA, Elmehasseb IM, Talha N, El‐Kemary M (2020) Parameters affecting carbofuran photocatalytic degradation in water using ZnO nanoparticles. J Chinese Chem Soc 1–10

  • "A valuable reputation (n.d.) Tyrone Hayes said that a chemical was harmful, its maker pursued him" by Rachel Aviv, The New Yorker, 10 February 2014

  • Bandala ER, Gelover S, Leal MT, Arancibia-Bulnes C, Jimenez A, Estrada CA (2002) Solar photocatalytic degradation of aldrin. Catal Today 76:189–199

    CAS  Google Scholar 

  • "Basic information about pesticide ingredients". US Environmental Protection Agency. Apr 2, 2018. Retrieved Dec 1, 2018

  • Beard J (2006) DDT and human health. Sci Total Environ 355:78–89

    CAS  Google Scholar 

  • Bhoj Y, Pandey G, Bhoj A, Tharmavaram M, Rawtani D (2021) Recent advancement in practices related to desalination by means of nanotechnology. Chem Phys Impact 2:100025

  • Blodgett DJ (2006) Organophosphate and carbamate insecticides. Small animal toxicology, 2nd ed.; Peterson ME Talcott PA Eds. Elsevier Saunders, Saint Louis, pp 941–953

  • Bonner MR, Coble J, Blair A, Freeman LEB, Hoppin JA, Sandler DA, Alavanja MCR (2007b) Malathion exposure and the incidence of cancer in the agricultural health study. Am J Epidemiol 166(9):1023–1034

    Google Scholar 

  • Bonner MR, Coble J, Blair A et al (2007) Malathion exposure and the incidence of cancer in the agricultural health study. Am J Epidemiol 166(9):1023–1034

    Google Scholar 

  • Bonner MR, Coble J, Blair A et al (2007a) Malathion exposure and the incidence of cancer in the agricultural health study. Am J Epidemiol 166(9):1023–1034

    Google Scholar 

  • Boussahel R, Harik D, Mammar M, Lamara-Mohamed S (2007) Degradation of obsolete DDT by Fenton oxidation with zero-valent iron. Desalination 206:369–372

    CAS  Google Scholar 

  • Canevari TC, Prado TM, Cincotto FH, Machado SAS (2016) Immobilization of ruthenium phthalocyanine on silica-coated multi-wall partially oriented carbon nanotubes: electrochemical detection of fenitrothion pesticide. Mater Res Bull 76:41–47

    CAS  Google Scholar 

  • California Department of Pesticide Regulation (2008) What are the potential health effects of pesticides? Community guide to recognizing and reporting pesticide problems. Sacramento, CA. Pages 27–29

  • Chemical review: atrazine (2015) Australian pesticides and veterinary medicines authority. 2014–05–28. Retrieved 2015–02–11. https://apvma.gov.au/node/12371

  • Chen GC, Shan XQ, Zhou YQ, Shen XE, Huang HL, Khan SU (2009) Adsorption kinetics, isotherms and thermodynamics of atrazine on surface oxidized multiwalled carbon nanotubes. J Hazard Mater 169:912–918. https://doi.org/10.1016/j.jhazmat.2009.04.034

  • Chen L, Hosseini M, Fakhri A, Fazelian N, Nasr SM, Nobakht N (2019) Synthesis and characterization of Cr2S3–Bi2O3 nanocomposites: photocatalytic, quenching, repeatability, and antibacterial performances. J Mater Sci Mater Electron 30:13067–13075. https://doi.org/10.1007/s10854-019-01668-4

  • Chen H, Yang S, Yu K, Ju Y, Sun C (2011) Effective photocatalytic degradation of atrazine over titania-coated carbon nanotubes (CNTs) coupled with microwave energy. J Phys Chem A 115:3034–3041

    CAS  Google Scholar 

  • Cheney MA, Fiorillo R, Criddle RS (1997) Herbicide and estrogen effects on the metabolic activity of Elliptio complanata measured by calorespirometry. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 118(2):159–164

  • Ci Y Wang S Zhang X Fang Z Ma A Huang Z (2018) Chemical warfare agents’ degradation on Fe–Cu codoped TiO2 nanoparticles. Appl Physics A 124(11). https://doi.org/10.1007/s00339-018-2209-x

  • Choi M, Lee IS, Jung RH (2016) Rapid determination of organochlorine pesticides in fish using selective pressurized liquid extraction and gas chromatography-mass spectrometry. Food Chem 205:1–8

    CAS  Google Scholar 

  • Comber S, Gardner M (1999) An assessment of trends in European environmental data for mercury and chlorinated organic compounds in water and biota. Sci Total Environ 244:193–201

    Google Scholar 

  • Cone Marla (2005) EPA takes pest killer diazinon off the shelves. Los Angeles Times. Retrieved 2 Jul 2020

  • Cortes DR, Hites RA (2000) Detection of statistically significant trends in atmospheric concentrations of semivolatile compounds. Environ Sci Technol 34:2826–2829

    CAS  Google Scholar 

  • Cornell University (n.d.) Pesticides in the environment archived 2009–06–05 at the Wayback Machine. Pesticide fact sheets and tutorial, . Pesticide Safety Education Program. Retrieved on 2007–10–11

  • Das K, Majhi D, Bariki R, Mishra BG (2020) SnS2 /Bi4Ti3O12 Heterostructure material: a UV-visible light active direct Z-scheme photocatalyst for aqueous phase degradation of diazinon. ChemistrySelect 5(4):1567–1577

    CAS  Google Scholar 

  • Dewhurst, Patrick (2011) Alarm over new pet poison. Cyprus Mail. Archived from the original on May 28, 2011

  • Donaldson D Kiely T Grube A Pesticide's industry sales and usage 1998–1999 market estimates. US Environmental Protection Agency; Washington (DC): Report No. EPA-733-R-02-OOI

  • Duarte AALS, Amorim MTSP (2020) Performance assessment of micropollutants removal from water using advanced oxidation processes Wseas Transactions on environment and development., volume 16. https://doi.org/10.37394/232015.2020.16.7

  • Economic benefits of pest management (2002) R. Peshin, encyclopedia of pest management, pages 224–227, Pub Marcel Dekker

  • Ebrahimi R, Maleki A, Rezaee R, Daraei H, Safari M, McKay G, … Jafari A (2020) Synthesis and application of Fe-Doped TiO2 nanoparticles for photodegradation of 2,4-D from aqueous solution. Arab J Sci Eng. https://doi.org/10.1007/s13369-020-05071-8 

  • Edwards D (2006) Reregistration eligibility decision for malathion (PDF). US Environmental Protection Agency - Prevention, Pesticides and Toxic Substances

  • Ejobi F, Kanja LW, Kyule MN, Muller P, Kruger J, Latigo AAR (1996) Organochlorine pesticide residues in mother’s milk in Uganda. Bull Environ Contam Toxicol 56:873–888

    CAS  Google Scholar 

  • Elliott DW, Lien HL, Zhang WX (2009) Degradation of lindane by zero-valent iron nanoparticles. J Environ Eng 135:317–324

    CAS  Google Scholar 

  • "EPA bans carbofuran pesticide residues on food". Environmental News Service. May 11, 2009. Retrieved June 5, 2009

  • Forget G Goodman T de Villiers A (1990) Impact of pesticide use on health in developing countries, Proceedings of a symposium held in Ottawa, Canada, 17–20 September 1990. Ottawa: Int Dev Res Centre

  • Fouad DM, Mohamed MB (2012) Comparative study of the photocatalytic activity of semiconductor nanostructures and their hybrid metal nanocomposites on the photodegradation of malathion. J Nanomater 2012:1–8

    Google Scholar 

  • Fouad DM, El-Said WA, Mohamed MB (2015) Spectroscopic characterization of magnetic Fe3O4@Au core shell nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc 140:392–397

    CAS  Google Scholar 

  • Four Corners By Janine Cohen (2013) Four corners investigation finds dangerous dioxins in widely used herbicide 24D". Abc.net.au. Retrieved 2014–05–03

  • Galloway TS, Depledge MH (2001) Immunotoxicity in invertebrates: measurement and ecotoxicological relevance. Ecotoxicology 10(1):5–23

    CAS  Google Scholar 

  • Gar Alalm M, Ookawara S, Fukushi D, Sato A, Tawfik A (2016) Improved WO3 photocatalytic efficiency using ZrO2 and Ru for the degradation of carbofuran and ampicillin. J Hazard Mater 302:225–231

    CAS  Google Scholar 

  • Gautam SK, Suresh S (2007) Studies on dechlorination of DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane) using magnesium/palladium bimetallic system. J Hazard Mater 139:146–153

    CAS  Google Scholar 

  • Gillion, RJ; Barbash, JE; Crawford, GG; Hamilton, PA; Martin, JD; Nakagaki, N; Nowell, LH; Scott, JC; Stackelberg, PE; Thelin, GP; Wolock, DM (2007–02–15) [2006]. "1. Overview of findings and implications". Pesticides in the Nation's Streams and Ground Water, 1992–2001 (Report). The quality of our nation’s waters. Reston, VA: US Geological Survey. p. 4. Circular 1291

  • González AE, Asomoza M, Solís S et al (2020) Enhanced photocatalytic degradation of the herbicide 2,4-dichlorophenoxyacetic acid by Pt/TiO2–SiO2 nanocomposites. Reac Kinet Mech Cat 131:489–503. https://doi.org/10.1007/s11144-020-01865-x

  • Grobler R (2019) As many as 1 000 dogs poisoned per week in SA. News24. Archived from the original on August 4, 2019. Retrieved November 12, 2019

  • Gupta SM, Tripathi M (2011) A review of TiO2 nanoparticles. Chin Sci Bull 56:1639

    CAS  Google Scholar 

  • Gunnell D, Eddleston M, Phillips MR et al (2007) The global distribution of fatal pesticide self-poisoning: systematic review. BMC Public Health 7(1):357

    Google Scholar 

  • Hong SH, Shim WJ, Han GM, Ha SY, Jang M, Rani M, Hong S, Yeo GY (2014) Levels and profiles of persistent organic pollutants in resident and migratory birds from an urbanized coastal region of South Korea. Sci Total Environ 470–471:1463–1470

    Google Scholar 

  • Hossaini H, Moussavi G, Farrokhi M (2014) The investigation of the LED-activated FeFNS-TiO2 nanocatalyst for photocatalytic degradation and mineralization of organophosphate pesticides in water. Water Res 59:130–144. https://doi.org/10.1016/j.watres.2014.04.009

  • "Ingredients used in pesticide products 2,4-D (2014) EPA. 2014–09–22. www2.epa.gov. Retrieved November 6, 2014

  • Israel B (2012) Common insecticide may harm boys’ brains more than girls’. Sci Am. https://www.scientificamerican.com/article/common-insecticide-may-harm-boys-brains-more-than-girls/

  • Jeyaratnam J, de Alwis Seneviratne RS, Copplestone JF (1982) Survey of pesticide poisoning in Sri Lanka. Bull World Health Organ 60(4):615–619

  • Jonidi-Jafari A, Shirzad-Siboni M, Yang JK, Naimi-Joubani M, Farrokhi M (2015) J Taiwan Inst Chem Eng 50:100–107

    CAS  Google Scholar 

  • Joo SH, Zhao D (2008) Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions: effects of catalyst and stabilizer. Chemosphere 70:418–425

    CAS  Google Scholar 

  • Jo W-K, Natarajan TS (2015) Influence of TiO2 morphology on the photocatalytic efficiency of direct Z-scheme g-C3N4/TiO2 photocatalysts for isoniazid degradation. Chem Eng J 281:549–565

    CAS  Google Scholar 

  • Kamrin MA (1997) Pesticide profiles: toxicity, environmental impact, and fate. Lewis Publishers, New York

    Google Scholar 

  • Kadam AN, Dhabbe RS, Kokate MR, Gaikwad YB, Garadkar KM (2014) Preparation of N doped TiO2 via microwave-assisted method and its photocatalytic activity for degradation of malathion. Spectrochim Acta Part A Mol Biomol Spectrosc 133:669–676

    CAS  Google Scholar 

  • Kafilzadeh F (2015) Assessment of organochlorine pesticide residues in water, sediments and fish from Lake Tashk. Iran Arch Life Sci 9:107–111

    Google Scholar 

  • Kalidhasan S, Ben-Sasson M, Dror I, Carmieli R, Schuster EM, Berkowitz B (2016) Oxidation of aqueous organic pollutants using a stable copper nanoparticle suspension. Can J Chem Eng 95(2):343–352. https://doi.org/10.1002/cjce.22652

    Article  CAS  Google Scholar 

  • Kamarudin NS, Jusoh R, Sukor NF, Jalil AA, Setiabudi HD (2020) Intensified photocatalytic degradation of 2, 4–dicholorophenoxyacetic acid using size-controlled silver nanoparticles: effect of pre-synthesis extraction. Adv Powder Technol 31(8):3381–3394

  • Kannan K, Tanabe S, Ramesh A, Subramanian A, Tatsukawa R (1992) Persistent organochlorine residues in foodstuffs from India and their implications on human dietary exposure. J Agric Food Chem 40:518–524

    CAS  Google Scholar 

  • Kang S, Wang G, Wang Z, Cai W (2019) Monodispersed zerovalent iron nanoparticles decorated carbon submicrospheres for enhanced removal of DDT from aqueous solutions. ChemistrySelect 4(41):12134–12142. https://doi.org/10.1002/slct.201902837

  • Khatri N, Tyagi S, Rawtani D (2016) Removal of basic dyes auramine yellow and auramine O by halloysite nanotubes. Int J Environ Waste Manage 17(1):44. https://doi.org/10.1504/ijewm.2016.076427

    Article  CAS  Google Scholar 

  • Kellogg RL, Nehring R, Grube A, Goss DW, and Plotkin S (2000) Environmental indicators of pesticide leaching and runoff from farm fields Archived June 18, 2002, at the Wayback Machine. United States Department of Agriculture Natural Resources Conservation Service. Retrieved on 2007–10–03

  • Kgoetlana CM, Malinga SP, Dlamini LN (2020) Photocatalytic degradation of chlorpyrifos with Mn-WO3/SnS2 heterostructure. Catalysts 10(6):699. https://doi.org/10.3390/catal10060699

  • Khoiriah K, Safni S, Syukri S, Gunlazuardi J (2020) The operational parameters effect on photocatalytic degradation of diazinon using carbon and nitrogen modified TiO2. Rasayan J Chem 13(3):1919–1925. https://doi.org/10.31788/RJC.2020.1335743

  • Koushik D, Sen Gupta S, Maliyekkal SM, Pradeep T (2016) Rapid dehalogenation of pesticides and organics at the interface of reduced graphene oxide-silver nanocomposite. J Hazard Materials 308:192–198. https://doi.org/10.1016/j.jhazmat.2016.01.004

  • Kurakalva RM (2016) In situ remediation of aldrin via activated persulfate oxidation. Geo-Chicago. https://doi.org/10.1061/9780784480168.031 

  • Kusvuran E, Erbatur O (2004) Degradation of aldrin in adsorbed system using advanced oxidation processes: comparison of the treatment methods. J Hazard Mater 106B:115–125

    Google Scholar 

  • Li W, Li Y, Zhang D, Lan Y, Guo J (2020) CuO-Co3O4@CeO2as a heterogeneous catalyst for efficient degradation of 2,4-dichlorophenoxyacetic acid by peroxymonosulfate. J Hazard Mater 381:121209

  • Li FB, Li XM, Zhou SG, Zhuang L, Cao F, Huang DY, Xu W, Liu TX, C.H, (2010) FengEnhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide Environ. Pollut 158:1733–1740

    CAS  Google Scholar 

  • Lia Z, Wang Y, Ni Y, Kokot S (2014) Unmodified silver nanoparticles for rapid analysis of the organophosphorus pesticide, dipterex, often found in different waters. Sens Actuator B 193:205–211

    Google Scholar 

  • Lin C, Lin KS (2007) Photocatalytic oxidation of toxic organohalides with TiO2/UV: the effects of humic substances and organic mixtures. Chemosphere 66:1872–1877

    CAS  Google Scholar 

  • "Listing of POPs in the Stockholm convention" (n.d.) Stockholm Convention

  • Lorenz, Eric S (2009) Potential health effects of pesticides (PDF). Ag communications and marketing: 1–8. Archived from the original (PDF) on 2013–08–11. Retrieved February 2014

  • Longnecker PM, Rogan WJ, Lucier G (1997) The human health effects of DDT (dichlorodiphenyltrichloroethane) and PCBs (polychlorinated biphenyls) and an overview of organochlorines in public health. Annu Rev Public Health 18:211–244

    CAS  Google Scholar 

  • Lopez-Ayala S, Rincon ME, Quiroz-Alfaro MA, Bandala ER, MendezRojas MA, Castaño VM (2015) Nanocrystalline titania doped by metal precursors in the photocatalytic degradation of 2,4-D sodium salt. J Photochem Photobiol A: Chem 311:166–175

  • Macholz RM, Kujwa M (1985) Recent state of lindane metabolism (Part III). Residue Rev 94:119–141

    CAS  Google Scholar 

  • Majhi D, Das K, Mishra A, Dhiman R, Mishra BG (2020) One pot synthesis of CdS/BiOBr/Bi2O2CO3: a novel ternary double z-scheme heterostructure photocatalyst for efficient degradation of atrazine. Appl Catal B: Environ 260:118222

  • Manga Raju I, Siva Rao T, Divya Lakshmi KV, Ravi Chandra M, Swathi Padmaja J, Divya G (2019) Poly 3-Thenoic acid sensitized, copper doped anatase/brookite TiO2 nanohybrids for enhanced photocatalytic degradation of an organophosphorus pesticide. J Environ Chem Eng 7:103211. https://doi.org/10.1016/j.jece.2019.103211

  • Mathur SC (1999) Future of Indian pesticides industry in next millennium. Pestic Inf 24:9–23

  • Malato S, Blanco J, Fernandez-Alba AR, Agüera A (2000) Solar photocatalytic mineralization of commercial pesticides: acrinathrin. Chemosphere 40:403–409

    CAS  Google Scholar 

  • Maya-Treviño ML, Guzmán-Mar JL, Hinojosa-Reyes L, Ramos-Delgado NA, Maldonado MI, Hernández-Ramírez A (2014) Ceram Int 40(6):8701–8708

    Google Scholar 

  • McMurray TA, Dunlop PSM, Byrne JA (2006) The photocatalytic degradation of atrazine on nanoparticulate TiO2 films. J Photochem Photobiol A Chem 182:43–51

    CAS  Google Scholar 

  • Merci S, Saljooqi A, Shamspur T, Mostafavi A (2020) Investigation of photocatalytic chlorpyrifos degradation by a new silica mesoporous material immobilized by WS2 and Fe3O4 nanoparticles: application of response surface methodology. Appl Org Chem (2020):e5343. https://doi.org/10.1002/aoc.5343

  • Mn C (2001) Nanoparticles. Proteins and nucleic acid biotechnology meets material science. Angew Chem Int Ed Eng 40:4128–4158

    Google Scholar 

  • Mirmasoomi SR, Ghazi MM, Galedari M (2016) Sep Purif Technol 175:18–21

    Google Scholar 

  • Mkhalid IA (2016) Ceram Int 42:15975–15980

    CAS  Google Scholar 

  • Mew EJ, Padmanathan P, Konradsen F et al (2017) The global burden of fatal self-poisoning with pesticides 2006–15: systematic review. J Affect Disord 219:93–104

    Google Scholar 

  • Moon HB, Kim HS, Choi M, Choi HG (2009) Human health risk of polychlorinated biphenyls and organochlorine pesticides resulting from seafood consumption in South Korea, 2005–2007. Food Chem Toxicol 47:1819–1825

    CAS  Google Scholar 

  • Moon HB, Lee DH, Lee YS, Choi M, Choi HG, Kannan K (2012) Polybrominated diphenyl ethers, polychlorinated biphenyls, and organochlorine pesticides in adipose tissues of Korean women. Arch Environ Contam Toxicol 62:176–184

    CAS  Google Scholar 

  • Mitchell HW (1965) Pesticides and other agricultural chemicals as a public health problem. Am J Public Health Nations Health 55(Suppl 7):10–15

    Google Scholar 

  • McKinlay R, Plant JA, Bell JNB, Voulvoulis N (2008) Environ Int 34:168–183

    CAS  Google Scholar 

  • Maleki A, Moradi F, Shahmoradi B, Rezaee R, Lee S-M (1918) J Mol Liq 297:11

    Google Scholar 

  • Moujahid A, Bang JJ, Yan F (2019) Effect of mixing on reductive dechlorination of persistent organic pollutants by Fe/Pd nanoparticles. Water Environment Research 1–10. https://doi.org/10.1002/wer.1018

  • National Park Service. US Department of the Interior. (2006) Sequoia & Kings Canyon National Park: air quality -- airborne synthetic chemicals. Nps.gov. Retrieved on September 19, 2007

  • Nasseri S, Borna MO, Esrafili A, RR Kalantary, Kakavandi B, Sillanpää M, Asadi A (2018) Photocatalytic degradation of malathion using Zn2+-doped TiO nanoparticles: statistical analysis and optimization of operating parameters. Appl Physics A 124:175

  • NaimiJoubani M, Zanjanchi MA, Sohrabnezhad S (2020) The carboxylate magnetic – zinc based metal-organic framework heterojunction: Fe3O4-COOH@ZIF-8/Ag/Ag3PO4 for plasmon enhanced visible light Z-scheme photocatalysis. Adv Powder Technol 31(1):29–39

    CAS  Google Scholar 

  • "NASS agricultural chemical database". Pestmanagement.info. Archived from the original on 27 September 2011. Retrieved 20 November 2011

  • Nativivad M, Ormad MP, Mosteo R, Ovelleiro JL (2012) Photocatalytic degradation of pesticides in natural water: effect of hydrogen peroxide (n.d.). Int J Photoenergy 1–11. https://doi.org/10.1155/2012/371714

  • Nekooie R, Shamspur T, Mostafavi A (2020) Novel CuO/TiO2/PANI nanocomposite: preparation and photocatalytic investigation for chlorpyrifos degradation in water under visible light irradiation. J Photochem Photobiol A: Chem, 113038. https://doi.org/10.1016/j.jphotochem.2020.113038

  • NIOSH (2014) Updated June 2014. The effects of workplace hazards on male reproductive. Health Publication number 96–132

  • Nobre FX, Mariano FAF, Santos FEP, Couceiro PRC, Brito WR (n.d.) Heterogeneous photocatalyst of tordon 2,4-D using the phase mixture of TiO2, (2019). J Environ Chem Eng 7(6):103501. https://doi.org/10.1016/j.jece.2019.103501

  • Orooji N, Takdastan A, JalilzadehYengejeh R, Jorfi S, Davami AH (2020) Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid using Fe3O4@TiO2/Cu2O magnetic nanocomposite stabilized on granular activated carbon from aqueous solution. Res Chem Intermed. https://doi.org/10.1007/s11164-020-04124-9

  • Pandey G, Tharmavaram M, Rawtani D (2020) Handbook of functionalized nanomaterials for industrial applications 417–433. http://www.ciceco.ua.pt/files/mustansar_hussain_1632110_1_.pdf

  • Parra S, Stanca SE, Guasaquillo I, Thampi KR (2004) Photocatalytic degradation of atrazine using suspended and supported TiO2. Appl Catal B Environ 51:107–116

  • Papoulias DM, Tillitt DE, Talykina MG, Whyte JJ, Richter CA (2014) Atrazine reduces reproduction in Japanese medaka (Oryziaslatipes). Aquat Toxicol 154:230–239

    CAS  Google Scholar 

  • Paknikar KM, Nagpal V, Pethkar AV, Rajwade JM (2005) Degradation of lindane from aqueous solutions using iron sulfide nanoparticles stabilized by biopolymers. Sci Technol Adv Mater 6:370–374

    CAS  Google Scholar 

  • Pesticide Action Network (2005) UK, Briefing paper-pesticides in water: costs to health and environment

  • Press Release (2009) COP4 - Geneva, 8 May 2009: Governments unite to step-up reduction on global DDT reliance and add nine new chemicals under international treaty

  • "Professional drug information: lindane" (n.d.) Retrieved 2020–02–28

  • Randall C et al (2014) “Pest management”. National pesticide applicator certification core manual, 2nd edn. National Association of State Departments of Agriculture Research Foundation, Washington

    Google Scholar 

  • Rattner BA (2009) History of wildlife toxicology. Ecotoxicology 18(7):773–783

    CAS  Google Scholar 

  • Rao CHS, Venkateswarlu V, Surender T, Eddleston M, Buckley NA (2005) Pesticide poisoning in south India-opportunities for prevention and improved medical management. Trop Med Int Health 10:581–588

    Google Scholar 

  • Ramos-Delgado N, Gracia-Pinilla M, Maya-Trevino L, Hinojosa-reyes L, Guzman-Mar J, Hernandez-Ramirez A (2013) J Hazard Mater 263P:36–44

    Google Scholar 

  • Rani M (2018) Shanker. U Environmental Science and Pollution Research 25(11):10878–10893

    CAS  Google Scholar 

  • Rawtani D, Khatri N, Tyagi S, Pandey G (2018) Nanotechnology-based recent approaches for sensing and remediation of pesticides. J Environ Manage 206:749–762. https://doi.org/10.1016/j.jenvman.2017.11.037

    Article  CAS  Google Scholar 

  • Rawtani D, Tharmavaram M, Pandey G, Hussain CM (2019) Functionalized nanomaterial for forensic sample analysis. TrAC Trends Anal Chem 120:115661. https://doi.org/10.1016/j.trac.2019.115661 

  • Rezaei SS, Dehghanifard E, Noorisepehr M, Kakavandi B, Esfahani AR (2019) Efficient clean-up of waters contaminated with diazinon pesticide using photo-decomposition of peroxymonosulfate by ZnO decorated on a magnetic core/shell structure. J Env Manag 250:109472

  • Rodante F, Marrosu G, Catalani G (1992) Thermal analysis and kinetic study of decomposition processes of some pesticides. J Therm Anal 38 2669–2682. https://doi.org/10.1007/bf01979743

  • Saadat S, Pandey G, Tharmavaram M, Braganza V, Rawtani D (2020) Nano-interfacial decoration of Halloysite Nanotubes for the development of antimicrobial nanocomposites Adv Colloid Interf Sci 275:102063

  • Safa S Mirzaei M (n.d.) Sci J Kurdistan Univ Med Sci 25(2), pp. 93–111

  • Sajjadi S (September 2019) J Ind Eng Chem 77(25):280–290

    CAS  Google Scholar 

  • Sakkas VA, Dimou A, Pitarakis k, Mantis G, Albanis T (2005) TiO2 photocatalyzed degradation of diazinon in an aqueous medium. Environ Chem Lett 57–61

  • Sánchez OA, Rodríguez JL, Barrera-Andrade JM, Borja-Urby R, Valenzuela MA (2020) High performance of Ag/BiVO4 photocatalyst for 2,4-Dichlorophenoxyacetic acid degradation under visible light. Appl Catal A Gen 600:117625. https://doi.org/10.1016/j.apta.2020.117625

  • Sandeep S, Nagashree KL, Maiyalagan T, Keerthiga G (2018) Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid—A comparative study in hydrothermal TiO2 and commercial TiO2. Appl Surf Sci 449:371–379. https://doi.org/10.1016/j.apsusc.2018.02.051

  • Sarkar UK, Basheer VS, Singh AK, Srivastava SM (2003) Organochlorine pesticide residues in water and fish samples: first report from rivers and streams of Kumaon Himalayan region. India Bull Environ Contam Toxicol 70:485–493

    CAS  Google Scholar 

  • Shabtai IA, Mishael YG (2017) J Hazard Mater 335:135–142

    CAS  Google Scholar 

  • Saljooqi A, Shamspur T, Mostafavi A (2020) Synthesis and photocatalytic activity of porous ZnO stabilized by TiO2 and Fe3O4 nanoparticles: investigation of pesticide degradation reaction in water treatment. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-11122-2

  • Sarmah AK, Müller K, Ahmad R (2004) Fate and behaviour of pesticides in the agroecosystem—a review with a New Zealand perspective. Aust J Soil Res 42(2):125. https://doi.org/10.1071/sr03100

  • Sen Gupta S, Chakraborty I, Maliyekkal SM, Adit Mark T, Pandey DK, Das SK, Pradeep T (2015) ACS Sustain. Chem Eng 3:1155–1163. https://doi.org/10.1021/acssuschemeng.5b00080

    Article  CAS  Google Scholar 

  • Senthilnathan J, Philip L (2010) Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2. Chem Eng J 161:83–92

    CAS  Google Scholar 

  • Smith AE, Secoy DM (1976) A compendium of inorganic substances used in European pest control before 1850. J. Ag. Food Chem. 24(6):1180

    CAS  Google Scholar 

  • Shoiful A, Ueda Y, Nugroho R, Honda K (2016a) Degradation of organochlorine pesticides (OCPs) in water by iron (Fe)-based materials. J Water Process Eng 11:110–117

    Google Scholar 

  • Shoiful A, Ueda Y, Nugroho R, Honda K (2016b) Degradation of organochlorine pesticides (OCPs) in water by iron (Fe)-based materials. J Water Process Eng 11:110–117

    Google Scholar 

  • Sin JC, Lam SM, Zeng H, Lin H, Li H, KuganKumaresan A, Lim JW (2020) Z-scheme heterojunction nanocomposite fabricated by decorating magnetic MnFeO nanoparticles on BiOBr nanosheets for enhanced visible light photocatalytic degradation of 2,4-dichlorophenoxyacetic acid and Rhodamine B Sep Purif Technol 250:117186

  • Singh S, Kumar V, Chauhan A, Datta S, Wani AB, Singh N, Singh J (2017) Toxicity, degradation and analysis of the herbicide atrazine. Environ Chem Lett 16(1):211–237. https://doi.org/10.1007/s10311-017-0665-8

    Article  CAS  Google Scholar 

  • Story P, Cox M (2001) Review of the effects of organophosphorus and carbamate insecticides on vertebrates. Are there implications for locust management in Australia? Wildl Res 28(2):179

    Google Scholar 

  • Sun S, He H, Yang C, Cheng Y, Liu Y (2019) Effects of Ca2+ and fulvic acids on atrazine degradation by nano-TiO2: performances and mechanisms. Scientific Reports 9(1). https://doi.org/10.1038/s41598-019-45086-2

  • Surendra B, Raju BM, Onesimus KNS, Choudhary GL, Paul PF, Vangalapati M (2020) Synthesis and characterization of Ni doped TiO2 nanoparticles and its application for the degradation of malathion. Materials Today: Proceedings 26:1091–1095 

  • Tian H, Li J, Mu Z, Li L, Hao Z (2009) Effect of pH on DDT degradation in aqueous solution using bimetallic Ni/Fe nanoparticles. Sep Purif Technol 66:84–89

  • Tian H, Chen J, He J, Liu F (2015) J Colloid Interface Sci 457:195–202

    CAS  Google Scholar 

  • Tharmavaram M, Pandey G, Rawtani D (2018) Surface modified halloysite nanotubes: a flexible interface for biological, environmental and catalytic applications. Adv Coll Interface Sci. https://doi.org/10.1016/j.cis.2018.09.001

    Article  Google Scholar 

  • "The North American regional action plan (NARAP) on lindane and other hexachlorocyclohexane (HCH) isomers" (PDF) (2013) Commission for Environmental Cooperation. 2013. Retrieved 2020–02–28

  • The history of pesticides, organic pesticides, September 19th 2008 http://blog.ecosmart.com/index.php/2008/09/19/the-history-of-pesticides/

  • Thi hang nyugen, Thi thuy linhngusan, Tien due pham, Thanh son Le (2020) Removal of lindane from aqueous solution using aluminum hydroxide nanoparticles with surface modification by anionic surfactant. Polymer (basel) 12(4):960

  • US EPA (2011) Malathion for mosquito control - pesticides - Archived from the original on 7 March 2011. Retrieved 29 April 2018

  • US EPA (2016) ÂMalathion for mosquito control; EPA draft malathion human health assessment. Available Source: https://www.epa.gov/pesticides/epa-draft-malathion-human-health-assessment-available

  • Vishnuganth MA, Remya N, Kumar M, Selvaraju N (2016) Photocatalytic degradation of carbofuran by TiO 2 -coated activated carbon: model for kinetic, electrical energy per order and economic analysis. J Environ Manage 181:201–207

    CAS  Google Scholar 

  • Wolfe DA, Champ MA, Cross FA, Kester DR, Park PK, Swanson RL (1984) Marine pollution research facilities in the People’s Republic of China. Mar Pollut Bull 15:207–212

    Google Scholar 

  • World Health Organization (WHO) (2003) Joint WHO/convention task force on the health aspects of air pollution. Health risks of persistent organic pollutants from long range transboundary air pollution. World Health Organization, Copenhagen

    Google Scholar 

  • WHO (1990) Public health impact of pesticides used in agriculture, England, UK

  • WHO, UNEP, editors (1990) Public health impact of pesticides used in agriculture. Geneva: World Health Organization. p. 128

  • World Health Organization (2010) The WHO recommended classification of pesticides by hazard and guidelines to classification 2009 (Report). World Health Organization. Retrieved 9 July 2014

  • Xiaofan LV, Ma Y, Li Y, Yang Q (2020) Water 12(10):2909. https://doi.org/10.3390/w12102909

  • Yang J, Sun H (2015) Degradation of γ-hexachlorocyclohexane using carboxymethylcellulose-stabilized Fe/Ni nanoparticles. Water Air Soil Pollut 226(9). https://doi.org/10.1007/s11270-015-2553-9

  • Yang XL, Wang SS, Bian YR, Chen F, Yu GF, Gu CG, Jiang X (2008) Dicofol application resulted in high DDTs residue in cotton fields from northern Jiangsu province. China J Hazard Mater 150:92–98

    CAS  Google Scholar 

  • Yu L, Yang X, Ye Y, Wang D (2015) RSC Adv 5:46059–46066

    CAS  Google Scholar 

  • Yu H, Wang X, Sun H, Huo M (2010) J Hazard Mater 184:753–758

    CAS  Google Scholar 

  • Zhang WJ, Jiang FB, Ou JF (2011) Global pesticide consumption and pollution: with China as a focus. Proc Int Acad Ecol Environ Sci 1:125–144

  • Zhao R, Li X, Sun B, Ji H, Wang C (2017) J Colloid Interface Sci 487:297–309

  • Zinovyev SS, Shinkova NA, Perosa A, Tundo P (2005) Liquid phase hydrodechlorination of dieldrin and DDT over Pd/C and Raney-Ni Appl. Catal B Environ 55:39–42

    CAS  Google Scholar 

  • Zhou JL, Maskaoui K, Qiu YW, Hong HS, Wang ZD (2001) Polychlorinated biphenyl congeners and organochlorine insecticides in the water column and sediments of Daya Bay. China Environ Pollut 113:373–384

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Ahmaruzzaman.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, G.K., Ahmaruzzaman, M. Recent advances in the development of nanocomposites for effective removal of pesticides from aqueous stream. J Nanopart Res 23, 213 (2021). https://doi.org/10.1007/s11051-021-05290-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-021-05290-6

Keywords

Navigation