Skip to main content

Advertisement

Log in

Transporters and transcription factors gene families involved in improving nitrogen use efficiency (NUE) and assimilation in rice (Oryza sativa L.)

  • Review
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Nitrogen (N) as a macronutrient is an important determinant of plant growth. The excessive usage of chemical fertilizers is increasing environmental pollution; hence, the improvement of crop’s nitrogen use efficiency (NUE) is imperative for sustainable agriculture. N uptake, transportation, assimilation, and remobilization are four important determinants of plant NUE. Oryza sativa L. (rice) is a staple food for approximately half of the human population, around the globe and improvement in rice yield is pivotal for rice breeders. The N transporters, enzymes indulged in N assimilation, and several transcription factors affect the rice NUE and subsequent yield. Although, a couple of improvements have been made regarding rice NUE, the knowledge about regulatory mechanisms operating NUE is scarce. The current review provides a precise knowledge of how rice plants detect soil N and how this detection is translated into the language of responses that regulate the growth. Additionally, the transcription factors that control N-associated genes in rice are discussed in detail. This mechanistic insight will help the researchers to improve rice yield with minimized use of chemical fertilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alfatih A, Jie Wu, Zhang Z-S, Xia J-Q, Jan SU, Lin-Hui Yu, Xiang C-B (2020) Rice NIN-LIKE PROTEIN 1 rapidly responds to nitrogen deficiency and improves yield and nitrogen use efficiency. J Exp Bot 71(19):6032–6042

    Article  CAS  PubMed  Google Scholar 

  • Araki R, Hasegawa H (2006) Expression of rice (Oryza sativa L.) genes involved in high-affinity nitrate transport during the period of nitrate induction. Breed Sci 56(3):295–302

    Article  CAS  Google Scholar 

  • Araus V, Vidal EA, Puelma T, Alamos S, Mieulet D, Guiderdoni E, Gutiérrez RA (2016) Members of BTB gene family of scaffold proteins suppress nitrate uptake and nitrogen use efficiency. Plant Physiol 171(2):1523–1532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arora R, Agarwal P, Ray S, Singh AK, Singh VP, Tyagi AK, Kapoor S (2007) MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genom 8(1):1–21

    Article  CAS  Google Scholar 

  • Balyan HS, Gahlaut V, Kumar A, Jaiswal V, Dhariwal R, Tyagi S, Agarwal P, Kumari S, Gupta PK (2016) Nitrogen and phosphorus use efficiencies in wheat: physiology, phenotyping, genetics, and breeding. Plant Breed Rev 40:167–234

    Article  Google Scholar 

  • Bao A, Liang Z, Zhao Z, Cai H (2015) Overexpressing of OsAMT1-3, a high affinity ammonium transporter gene, modifies rice growth and carbon-nitrogen metabolic status. Int J Mol Sci 16(5):9037–9063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao A, Zhuqing Z, Guangda D, Lei S, Fangsen X, Hongmei C (2014) Accumulated expression level of cytosolic glutamine synthetase 1 gene (OsGS1; 1 or OsGS1; 2) alter plant development and the carbon-nitrogen metabolic status in rice. PLoS ONE 9(4):95581

    Article  CAS  Google Scholar 

  • Brauer EK, Rochon A, Bi Y-M, Bozzo GG, Rothstein SJ, Shelp BJ (2011) Reappraisal of nitrogen use efficiency in rice overexpressing glutamine synthetase1. Physiol Plant 141(4):361–372

    Article  CAS  PubMed  Google Scholar 

  • Cai H, Zhou Y, Xiao J, Li X, Zhang Q, Lian X (2009) Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice. Plant Cell Rep 28(3):527–537

    Article  CAS  PubMed  Google Scholar 

  • Chardin C, Girin T, Roudier F, Meyer C, Krapp A (2014) The plant RWP-RK transcription factors: key regulators of nitrogen responses and of gametophyte development. J Exp Bot 65(19):5577–5587

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Ning Xu, Qi Wu, Bo Yu, Chu Y, Li X, Huang J, Jin L (2018) OsMADS27 regulates the root development in a NO3—Dependent manner and modulates the salt tolerance in rice (Oryza sativa L.). Plant Sci 277:20–32

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Fan X, Qian K, Zhang Y, Miaoquan Song Yu, Liu GX, Fan X (2017) pOsNAR2.1:OsNAR2.1 expression enhances nitrogen uptake efficiency and grain yield in transgenic rice plants. Plant Biotechnol J 15(10):1273–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Xiaoqin L, Shuhua L, Xiaoru F, Limei Z, Miaoquan S, Xiaorong F, Guohua X (2020) Co-overexpression of OsNAR2.1 and OsNRT2.3a increased agronomic nitrogen use efficiency in transgenic rice plants. Front Plant Sci 11:1245

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen J, Zhang Y, Tan Y, Zhang M, Zhu L, Guohua Xu, Fan X (2016) Agronomic nitrogen-use efficiency of rice can be increased by driving OsNRT 2.1 expression with the OsNAR 2.1 promoter. Plant Biotechnol J 14(8):1705–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi HK, Kleinhofs A, An G (1989) Nucleotide sequence of rice nitrate reductase genes. Plant Mol Biol 13(6):731–733

    Article  CAS  PubMed  Google Scholar 

  • Choudhury ATMA, Kennedy IR (2005) Nitrogen fertilizer losses from rice soils and control of environmental pollution problems. Commun Soil Sci Plant Anal 36(11–12):1625–1639

    Article  CAS  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15(10):573–581

    Article  CAS  PubMed  Google Scholar 

  • Fan T, Yang Wu, Zeng X, Xinlan Xu, Yanling Xu, Fan X, Luo M, Tian C, Xia K, Zhang M (2020) A rice autophagy gene OsATG8b is involved in nitrogen remobilization and control of grain quality. Front Plant Sci 11:588

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan X, Feng H, Tan Y, Yanling Xu, Miao Q, Guohua Xu (2016a) A putative 6-transmembrane nitrate transporter OsNRT1. 1b plays a key role in rice under low nitrogen. J Integr Plant Biol 58(6):590–599

    Article  CAS  PubMed  Google Scholar 

  • Fan X, Tang Z, Tan Y, Zhang Y, Luo B, Yang M, Lian X, Shen Q, Miller AJ, Guohua Xu (2016b) Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. Proc Natl Acad Sci 113(26):7118–7123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan X, Xie D, Chen J, Haiyan Lu, Yanling Xu, Ma C, Guohua Xu (2014) Over-expression of OsPTR6 in rice increased plant growth at different nitrogen supplies but decreased nitrogen use efficiency at high ammonium supply. Plant Sci 227:1–11

    Article  CAS  PubMed  Google Scholar 

  • Fang Z, Genxiang B, Weiting H, Zhixin W, Xuelu W, Mingyong Z (2017) The rice peptide transporter OsNPF7.3 is induced by organic nitrogen, and contributes to nitrogen allocation and grain yield. Front Plant Sci 8:1338

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang Z, Xia K, Yang X, Grotemeyer MS, Meier S, Rentsch D, Xinlan Xu, Zhang M (2013) Altered expression of the PTR/NRT1 homologue OsPTR9 affects nitrogen utilization efficiency, growth and grain yield in rice. Plant Biotechnol J 11(4):446–458

    Article  CAS  PubMed  Google Scholar 

  • Ferreira LM, Miranda V, de Souza O, Tavares CH, Zonta E, Santa-Catarina C, Regina S, de Souza M, Fernandes S, Santos LA (2015) OsAMT1.3 expression alters rice ammonium uptake kinetics and root morphology. Plant Biotechnol Rep 9(4):221–229

    Article  Google Scholar 

  • Frink CR, Waggoner PE, Ausubel JH (1999) Nitrogen fertilizer: retrospect and prospect. Proc Natl Acad Sci 96(4):1175–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funayama K, Kojima S, Tabuchi-Kobayashi M, Sawa Y, Nakayama Y, Hayakawa T, Yamaya T (2013) Cytosolic glutamine synthetase1; 2 is responsible for the primary assimilation of ammonium in rice roots. Plant Cell Physiol 54(6):934–943

    Article  CAS  PubMed  Google Scholar 

  • Gan Y, Filleur S, Rahman A, Gotensparre S, Forde BG (2005) Nutritional regulation of ANR1 and other root-expressed MADS-box genes in Arabidopsis thaliana. Planta 222(4):730

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Zuopeng Xu, Zhang L, Li S, Wang S, Yang H, Liu X, Zeng D, Liu Q, Qian Q (2020) MYB61 is regulated by GRF4 and promotes nitrogen utilization and biomass production in rice. Nat Commun 11(1):1–12

    Article  CAS  Google Scholar 

  • Gao Z, Wang Y, Chen G, Zhang A, Yang S, Shang L, Wang D, Ruan B, Liu C, Jiang H (2019) The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency. Nat Commun 10(1):1–10

    Article  CAS  Google Scholar 

  • Godfray HCJ, John RB, Ian RC, Lawrence H, David L, James FM, Jules P, Sherman R, Sandy MT, Camilla T (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818

    Article  CAS  PubMed  Google Scholar 

  • Gojon A (2017) Nitrogen nutrition in plants: rapid progress and new challenges. J Exp Bot 68(10):2457–2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Good AG, Shrawat AK, Muench DG (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci 9(12):597–605

    Article  CAS  PubMed  Google Scholar 

  • Hamat HB, Kleinhofs A, Warner RL (1989) Nitrate reductase induction and molecular characterization in rice (Oryza sativa L.). Mol Gen Genet MGG 218(1):93–98

    Article  CAS  Google Scholar 

  • Hasegawa H, Katagiri T, Ida S, Yatou O, Ichii M (1992) Characterization of a rice (Oryza sativa L.) mutant deficient in the heme domain of nitrate reductase. Theor Appl Genet 84(1–2):6–9

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa H, Yatou O, Katagiri T, Ichii M (1991) Screening for nitrate reductase-deficient mutants in rice (Oryza sativa L.). Jpn J Breed 41(1):95–101

    Article  CAS  Google Scholar 

  • Havé M, Marmagne A, Chardon F, Masclaux-Daubresse C (2017) Nitrogen remobilization during leaf senescence: lessons from Arabidopsis to crops. J Exp Bot 68(10):2513–2529

    PubMed  Google Scholar 

  • Hoque MS, Masle J, Udvardi MK, Ryan PR, Upadhyaya NM (2006) Over-expression of the rice OsAMT1-1 gene increases ammonium uptake and content, but impairs growth and development of plants under high ammonium nutrition. Funct Plant Biol 33(2):153–163

    Article  CAS  PubMed  Google Scholar 

  • Hsieh P-H, Kan C-C, Hsin-Yu Wu, Yang H-C, Hsieh M-H (2018) Early molecular events associated with nitrogen deficiency in rice seedling roots. Sci Rep 8(1):1–23

    Article  Google Scholar 

  • Hu B, Wang W, Shujun Ou, Tang J, Li H, Che R, Zhang Z, Chai X, Wang H, Wang Y (2015a) Variation in NRT1. 1B contributes to nitrate-use divergence between rice subspecies. Nat Genet 47(7):834

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Wang Y, Fang Y, Zeng L, Jie Xu, Haiping Yu, Shi Z, Pan J, Zhang D, Kang S (2015b) A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant 8(10):1455–1465

    Article  CAS  PubMed  Google Scholar 

  • Hu R, Diyang Q, Yi C, Anthony JM, Xiaorong F, Xiaoping P, Mingyong Z (2016) Knock-down of a tonoplast localized low-affinity nitrate transporter OsNPF7.2 affects rice growth under high nitrate supply. Front Plant Sci 7:1529

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang S, Liang Z, Chen Si, Sun H, Fan X, Wang C, Guohua Xu, Zhang Y (2019) A transcription factor, OsMADS57, regulates long-distance nitrate transport and root elongation. Plant Physiol 180(2):882–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Genxiang B, Jie W, Wei Z, Qisen Z, Kai L, Shiyong S, Zhongming F (2018) Two splicing variants of OsNPF7.7 regulate shoot branching and nitrogen utilization efficiency in rice. Front Plant Sci 9:300

    Article  PubMed  PubMed Central  Google Scholar 

  • Huo K, Xiangchao S, Yan X, Zhenguo S, Chen C (2020) Excess copper inhibits the growth of rice seedlings by decreasing uptake of nitrate. Ecotoxicol Environ Saf 190:110105

    Article  CAS  PubMed  Google Scholar 

  • Ishiyama K, Inoue E, Tabuchi M, Yamaya T, Takahashi H (2004) Biochemical background and compartmentalized functions of cytosolic glutamine synthetase for active ammonium assimilation in rice roots. Plant Cell Physiol 45(11):1640–1647

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto M, Tagiri A (2016) Micro RNA-targeted transcription factor gene RDD1 promotes nutrient ion uptake and accumulation in rice. Plant J 85(4):466–477

    Article  CAS  PubMed  Google Scholar 

  • Katayama H, Mori M, Kawamura Y, Tanaka T, Mori M, Hasegawa H (2009) Production and characterization of transgenic rice plants carrying a high-affinity nitrate transporter gene (OsNRT2.1). Breed Sci 59(3):237–243

    Article  CAS  Google Scholar 

  • Kirk GJD, Kronzucker HJ (2005) The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: a modelling study. Ann Bot 96(4):639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirk GJD (2003) Rice root properties for internal aeration and efficient nutrient acquisition in submerged soil. New Phytol 159(1):185–194

    Article  CAS  PubMed  Google Scholar 

  • Kronzucker HJ, Yaeesh Siddiqi M, Glass ADM, Kirk GJD (1999) Nitrate-ammonium synergism in rice. A subcellular flux analysis. Plant Physiol 119(3):1041–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Silim SN, Okamoto M, Siddiqi MY, Glass ADM (2003) Differential expression of three members of the AMT1 gene family encoding putative high-affinity NH4+ transporters in roots of Oryza sativa subspecies indica. Plant Cell Environ 26(6):907–914

    Article  CAS  PubMed  Google Scholar 

  • Kusano M, Fukushima A, Tabuchi-Kobayashi M, Funayama K, Kojima S, Maruyama K, Yamamoto YY, Nishizawa T, Kobayashi M, Wakazaki M (2020) Cytosolic GLUTAMINE SYNTHETASE1; 1 modulates metabolism and chloroplast development in roots. Plant Physiol 182(4):1894–1909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusano M, Tabuchi M, Fukushima A, Funayama K, Diaz C, Kobayashi M, Hayashi N, Tsuchiya YN, Takahashi H, Kamata A (2011) Metabolomics data reveal a crucial role of cytosolic glutamine synthetase 1; 1 in coordinating metabolic balance in rice. Plant J 66(3):456–466

    Article  CAS  PubMed  Google Scholar 

  • Kushwaha H, Gupta N, Singh VK, Kumar A, Yadav D (2008) In silico analysis of PCR amplified DOF (DNA binding with one finger) transcription factor domain and cloned genes from cereals and millets. Online J Bioinf 9(2):130–143

    Google Scholar 

  • Lancien M, Martin M, Hsieh M-H, Leustek T, Goodman H, Coruzzi GM (2002) Arabidopsis glt1-T mutant defines a role for NADH-GOGAT in the non-photorespiratory ammonium assimilatory pathway. Plant J 29(3):347–358

    Article  CAS  PubMed  Google Scholar 

  • Lea PJ, Miflin BJ (2003) Glutamate synthase and the synthesis of glutamate in plants. Plant Physiol Biochem 41(6–7):555–564

    Article  CAS  Google Scholar 

  • Lea PJ, Sodek L, Parry MAJ, Shewry PR, Halford NG (2007) Asparagine in plants. Ann Appl Biol 150(1):1–26

    Article  CAS  Google Scholar 

  • Lea PJ, Miflin BJ (1974) Alternative route for nitrogen assimilation in higher plants. Nature 251(5476):614–616

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Marmagne A, Park J, Fabien C, Yim Y, Kim S-j, Kim T-H, Lim PO, Masclaux-Daubresse C, Nam HG (2020a) Concurrent activation of OsAMT1; 2 and OsGOGAT1 in rice leads to enhanced nitrogen use efficiency under nitrogen limitation. Plant J 103(1):7–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Park J, Lee J, Shin D, Marmagne A, Lim PO, Masclaux-Daubresse C, An G, Nam HG (2020b) OsASN1 overexpression in Rice increases grain protein content and yield under nitrogen-limiting conditions. Plant Cell Physiol 61(7):1309–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B-Z, Merrick M, Li S-M, Li H-Y, Zhu S-W, Shi W-M, Yan-Hua Su (2009) Molecular basis and regulation of ammonium transporter in rice. Rice Sci 16(4):314–322

    Article  Google Scholar 

  • Li C, Tang Z, Wei J, Hongye Qu, Xie Y, Guohua Xu (2016) The OsAMT1.1 gene functions in ammonium uptake and ammonium–potassium homeostasis over low and high ammonium concentration ranges. J Genet Genom 43(11):639–649

    Article  Google Scholar 

  • Li S, Tian Y, Kun Wu, Ye Y, Jianping Yu, Zhang J, Liu Q, Mengyun Hu, Li H, Tong Y (2018) Modulating plant growth–metabolism coordination for sustainable agriculture. Nature 560(7720):595–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YL, Fan XR, Shen QR (2008) The relationship between rhizosphere nitrification and nitrogen-use efficiency in rice plants. Plant Cell Environ 31(1):73–85

    PubMed  Google Scholar 

  • Li Y, Ouyang J, Wang Y-Y, Rui Hu, Xia K, Duan J, Wang Y, Tsay Y-F, Zhang M (2015) Disruption of the rice nitrate transporter OsNPF2. 2 hinders root-to-shoot nitrate transport and vascular development. Sci Rep 5(1):1–10

    Google Scholar 

  • Liang C, Wang Y, Zhu Y, Tang J, Bin Hu, Liu L, Shujun Ou, Hongkai Wu, Sun X, Chu J (2014) OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci 111(27):10013–10018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin C-M, Koh S, Stacey G, Su-May Yu, Lin T-Y, Tsay Y-F (2000) Cloning and functional characterization of a constitutively expressed nitrate transporter gene, OsNRT1, from rice. Plant Physiol 122(2):379–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo B, Jingguang C, Longlong Z, Shuhua L, Bin L, Lu H, Guoyou Y, Guohua X, Xiaorong F (2018) Overexpression of a high-affinity nitrate transporter OsNRT21 increases yield and manganese accumulation in rice under alternating wet and dry condition. Front Plant Sci 9:1192

    Article  PubMed  PubMed Central  Google Scholar 

  • Mandadi KK, Misra A, Ren S, McKnight TD (2009) BT2, a BTB protein, mediates multiple responses to nutrients, stresses, and hormones in Arabidopsis. Plant Physiol 150(4):1930–1939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105(7):1141–1157

    Article  PubMed  PubMed Central  Google Scholar 

  • Naz M, Luo B, Guo X, Li B, Chen J, Fan X (2019) Overexpression of nitrate transporter OsNRT2.1 enhances nitrate-dependent root elongation. Genes 10(4):290

    Article  CAS  PubMed Central  Google Scholar 

  • Nishimura A, Ashikari M, Lin S, Takashi T, Angeles ER, Yamamoto T, Matsuoka M (2005) Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. Proc Natl Acad Sci 102(33):11940–11944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa T, Fukuoka H, Yano H, Ohkawa Y (1999) Relationships between nitrite reductase activity and genotype-dependent callus growth in rice cell cultures. Plant Cell Rep 18(7–8):576–581

    Article  CAS  Google Scholar 

  • Ohashi M, Ishiyama K, Kojima S, Kojima M, Sakakibara H, Yamaya T, Hayakawa T (2017) Lack of cytosolic glutamine synthetase1; 2 activity reduces nitrogen-dependent biosynthesis of cytokinin required for axillary bud outgrowth in rice seedlings. Plant Cell Physiol 58(4):679–690

    Article  CAS  PubMed  Google Scholar 

  • Ohashi M, Ishiyama K, Kojima S, Konishi N, Nakano K, Kanno K, Hayakawa T, Yamaya T (2015a) Asparagine synthetase1, but not asparagine synthetase2, is responsible for the biosynthesis of asparagine following the supply of ammonium to rice roots. Plant Cell Physiol 56(4):769–778

    Article  CAS  PubMed  Google Scholar 

  • Ohashi M, Ishiyama K, Kusano M, Fukushima A, Kojima S, Hanada A, Kanno K, Hayakawa T, Seto Y, Kyozuka J (2015b) Lack of cytosolic glutamine synthetase1; 2 in vascular tissues of axillary buds causes severe reduction in their outgrowth and disorder of metabolic balance in rice seedlings. Plant J 81(2):347–356

    Article  CAS  PubMed  Google Scholar 

  • Ohashi M, Ishiyama K, Kusano M, Fukushima A, Kojima S, Hayakawa T, Yamaya T (2018) Reduction in sucrose contents by downregulation of fructose-1, 6-bisphosphatase 2 causes tiller outgrowth cessation in rice mutants lacking glutamine synthetase1; 2. Rice 11(1):65

    Article  PubMed  PubMed Central  Google Scholar 

  • Okumoto S, Pilot G (2011) Amino acid export in plants: a missing link in nitrogen cycling. Mol Plant 4(3):453–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouyang J, Cai Z, Xia K, Wang Y, Duan J, Zhang M (2010) Identification and analysis of eight peptide transporter homologs in rice. Plant Sci 179(4):374–382

    Article  CAS  Google Scholar 

  • Ozawa K, Kawahigashi H (2006) Positional cloning of the nitrite reductase gene associated with good growth and regeneration ability of calli and establishment of a new selection system for Agrobacterium-mediated transformation in rice (Oryza sativa L.). Plant Sci 170(2):384–393

    Article  CAS  Google Scholar 

  • Puig J, Meynard D, Khong GN, Pauluzzi G, Guiderdoni E, Gantet P (2013) Analysis of the expression of the AGL17-like clade of MADS-box transcription factors in rice. Gene Expr Patterns 13(5–6):160–170

    Article  CAS  PubMed  Google Scholar 

  • Ranathunge K, El-Kereamy A, Gidda S, Bi Y-M, Rothstein SJ (2014) AMT1;1 transgenic rice plants with enhanced NH4+ permeability show superior growth and higher yield under optimal and suboptimal NH4+ conditions. J Exp Bot 65(4):965–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren S, Mandadi KK, Boedeker AL, Rathore KS, McKnight TD (2007) Regulation of telomerase in Arabidopsis by BT2, an apparent target of TELOMERASE ACTIVATOR1. Plant Cell 19(1):23–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud P-F, Lindquist EA, Kamisugi Y (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319(5859):64–69

    Article  CAS  PubMed  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang C-Z, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290(5499):2105–2110

    Article  CAS  PubMed  Google Scholar 

  • Robert HS, Quint Ab, Brand D, Vivian-Smith A, Offringa R (2009) BTB and TAZ domain scaffold proteins perform a crucial function in Arabidopsis development. Plant J 58(1):109–121

    Article  CAS  PubMed  Google Scholar 

  • Schauser L, Roussis A, Stiller J, Stougaard J (1999) A plant regulator controlling development of symbiotic root nodules. Nature 402(6758):191–195

    Article  CAS  PubMed  Google Scholar 

  • Selvaraj MG, Valencia MO, Ogawa S, Yingzhi Lu, Liying Wu, Downs C, Skinner W, Zhongjin Lu, Kridl JC, Ishitani M (2017) Development and field performance of nitrogen use efficient rice lines for Africa. Plant Biotechnol J 15(6):775–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen TC (1969) The induction of nitrate reductase and the preferential assimilation of ammonium in germinating rice seedlings. Plant Physiol 44(11):1650–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen T-C, Funkhouser EA, Guerrero MG (1976) NADH-and NAD (P) H-nitrate reductases in rice seedlings. Plant Physiol 58(3):292–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi WM, Wei Feng Xu, Li SM, Zhao XQ, Dong GQ (2010) Responses of two rice cultivars differing in seedling-stage nitrogen use efficiency to growth under low-nitrogen conditions. Plant Soil 326(1–2):291

    Article  CAS  Google Scholar 

  • Sivasankar S, Oaks A (1996) Nitrate assimilation in higher plants: the effect of metabolites and light. Plant Physiol Biochem 34(5):609–620

    CAS  Google Scholar 

  • Sonoda Y, Ikeda A, Saiki S, von Wirén N, Yamaya T, Yamaguchi J (2003) Distinct expression and function of three ammonium transporter genes (OsAMT1; 11; 3) in rice. Plant Cell Physiol 44(7):726–734

    Article  CAS  PubMed  Google Scholar 

  • Suenaga A, Moriya K, Sonoda Y, Ikeda A, Von Wirén N, Hayakawa T, Yamaguchi J, Yamaya T (2003) Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants. Plant Cell Physiol 44(2):206–211

    Article  CAS  PubMed  Google Scholar 

  • Tabuchi M, Abiko T, Yamaya T (2007) Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). J Exp Bot 58(9):2319–2327

    Article  CAS  PubMed  Google Scholar 

  • Tabuchi M, Sugiyama K, Ishiyama K, Inoue E, Sato T, Takahashi H, Yamaya T (2005) Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1; 1, a cytosolic glutamine synthetase1; 1. Plant J 42(5):641–651

    Article  CAS  PubMed  Google Scholar 

  • Tamura W, Hidaka Y, Tabuchi M, Kojima S, Hayakawa T, Sato T, Obara M, Kojima M, Sakakibara H, Yamaya T (2010) Reverse genetics approach to characterize a function of NADH-glutamate synthase1 in rice plants. Amino Acids 39(4):1003–1012

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Ye J, Yao X, Zhao P, Xuan W, Tian Y, Zhang Y, Shuang Xu, An H, Chen G (2019) Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nat Commun 10(1):1–11

    Article  CAS  Google Scholar 

  • Tang Z, Fan X, Li Q, Feng H, Miller AJ, Shen Q, Guohua Xu (2012) Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx. Plant Physiol 160(4):2052–2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tegeder M, Masclaux-Daubresse C (2018) Source and sink mechanisms of nitrogen transport and use. New Phytol 217(1):35–53

    Article  PubMed  Google Scholar 

  • Tobin AK, Yamaya T (2001) Cellular compartmentation of ammonium assimilation in rice and barley. J Exp Bot 52(356):591–604

    Article  CAS  PubMed  Google Scholar 

  • Wan TENG, Xue HE, Yi-ping TONG (2017) Transgenic approaches for improving use efficiency of nitrogen, phosphorus and potassium in crops. J Integr Agric 16(12):2657–2673

    Article  Google Scholar 

  • Wang D, Tangqian Xu, Yin Z, Wenjuan Wu, Geng H, Li L, Yang M, Cai H, Lian X (2020) Overexpression of OsMYB305 in rice enhances the nitrogen uptake under low-nitrogen condition. Front Plant Sci 11:369

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Kai Lu, Nie H, Zeng Q, Bowen Wu, Qian J, Fang Z (2018a) Rice nitrate transporter OsNPF7.2 positively regulates tiller number and grain yield. Rice 11(1):1–13

    Article  Google Scholar 

  • Wang M, Takahiro H, Makoto H, Yoshihiro O, Kenji Y, Shota T, Takehiro K, Toru F (2020) OsNLP4 is required for nitrate assimilation gene expressions and nitrate-dependent growth in rice. bioRxiv. 2:19

    Google Scholar 

  • Wang W, Bin Hu, Yuan D, Liu Y, Che R, Yingchun Hu, Shujun Ou, Liu Y, Zhang Z, Wang H (2018b) Expression of the nitrate transporter gene OsNRT1. 1A/OsNPF6. 3 confers high yield and early maturation in rice. Plant Cell 30(3):638–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y-Y, Cheng Y-H, Chen K-E, Tsay Y-F (2018c) Nitrate transport, signaling, and use efficiency. Annu Rev Plant Biol 69:85–122

    Article  CAS  PubMed  Google Scholar 

  • Wei J, Zheng Yi, Feng H, Hongye Qu, Fan X, Yamaji N, Ma JF, Guohua Xu (2018) OsNRT2.4 encodes a dual-affinity nitrate transporter and functions in nitrate-regulated root growth and nitrate distribution in rice. J Exp Bot 69(5):1095–1107

    Article  CAS  PubMed  Google Scholar 

  • Wei J, Yunfei Wu, Cho L-H, Yoon J, Choi H, Yoon H, Jin P, Yi J, Lee Y-S, Jeong HJ (2017) Identification of root-preferential transcription factors in rice by analyzing GUS expression patterns of T-DNA tagging lines. J Plant Biol 60(3):268–277

    Article  CAS  Google Scholar 

  • Weih M, Hamnér K, Pourazari F (2018) Analyzing plant nutrient uptake and utilization efficiencies: comparison between crops and approaches. Plant Soil 430(1):7–21

    Article  CAS  Google Scholar 

  • Wu J, Zi-Sheng Z, Jin-Qiu X, Alamin A, Ying S, Yi-Jie H, Guang-Yu W, Liang-Qi S, Hui T, Yang L (2020) Rice NIN-LIKE PROTEIN 4 plays a pivotal role in nitrogen use efficiency. Plant Biotechnol J 3:169

    Google Scholar 

  • Xia K, Liu T, Ouyang J, Wang R, Fan T, Zhang M (2011) Genome-wide identification, classification, and expression analysis of autophagy-associated gene homologues in rice (Oryza sativa L.). DNA Res 18(5):363–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia X, Fan X, Wei J, Feng H, Hongye Qu, Xie D, Miller AJ, Guohua Xu (2015) Rice nitrate transporter OsNPF2. 4 functions in low-affinity acquisition and long-distance transport. J Exp Bot 66(1):317–331

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Fan X, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol 63:153–182

    Article  CAS  PubMed  Google Scholar 

  • Xuan YH, Kumar V, Zhu XF, Je BI, Kim CM, Huang J, Cho JH, Yi G, Han C-D (2018) IDD10 is Involved in the Interaction between NH4+ and Auxin Signaling in Rice Roots. J Plant Biol 61(2):72–79

    Article  CAS  Google Scholar 

  • Xuan YH, Priatama RA, Huang J, Je BI, Liu JM, Park SJ, Piao HL, Son DY, Lee JJ, Park SH (2013) Indeterminate domain 10 regulates ammonium-mediated gene expression in rice roots. New Phytol 197(3):791–804

    Article  CAS  PubMed  Google Scholar 

  • Yamaya T (2011) Disruption of a novel NADH-glutamate synthase2 gene caused marked reduction in spikelet number of rice. Front Plant Sci 2:57

    PubMed  PubMed Central  Google Scholar 

  • Yamaya T, Kusano M (2014) Evidence supporting distinct functions of three cytosolic glutamine synthetases and two NADH-glutamate synthases in rice. J Exp Bot 65(19):5519–5525

    Article  CAS  PubMed  Google Scholar 

  • Yamaya T, Obara M, Nakajima H, Sasaki S, Hayakawa T, Sato T (2002) Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. J Exp Bot 53(370):917–925

    Article  CAS  PubMed  Google Scholar 

  • Yan M, Fan X, Feng H, Miller AJ, Shen Q, Guohua Xu (2011) Rice OsNAR2. 1 interacts with OsNRT2. 1, OsNRT2. 2 and OsNRT2. 3a nitrate transporters to provide uptake over high and low concentration ranges. Plant Cell Environ 34(8):1360–1372

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Dongli Hao Yu, Cong MJ, Yanhua Su (2015) The rice OsAMT1; 1 is a proton-independent feedback regulated ammonium transporter. Plant Cell Rep 34(2):321–330

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Jinbo Z, Zucong C (2016) Nitrification activities and N mineralization in paddy soils are insensitive to oxygen concentration. Acta Agricul Scandinavica Sect B Soil Plant Sci 66(3):272–281

    CAS  Google Scholar 

  • Ying-Hua D, Ya-Li Z, Qi-Rong S, Song-Wei W (2006) Nitrate effect on rice growth and nitrogen absorption and assimilation at different growth stages. Pedosphere 16(6):707–717

    Article  Google Scholar 

  • Yu C, Yihua L, Aidong Z, Sha S, An Y, Linli H, Imran A, Yu L, Brian GF, Yinbo G (2015) MADS-box transcription factor OsMADS25 regulates root development through affection of nitrate accumulation in rice. PLoS ONE 10(8):e0135196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu J, Xuan W, Tian Y, Fan L, Sun J, Tang W, Chen G, Wang B, Liu Y, Wei Wu (2021) Enhanced OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice. Plant Biotechnol J 19(1):167–176

    Article  CAS  PubMed  Google Scholar 

  • Yun CAO, Xiao-Rong FAN, Shu-Bin SUN, Guo-Hua XU, Jiang HU, Qi-Rong SHEN (2008) Effect of nitrate on activities and transcript levels of nitrate reductase and glutamine synthetase in rice. Pedosphere 18(5):664–673

    Article  Google Scholar 

  • Zeng D-D, Qin R, Mei Li Md, Alamin X-L, Liu Yu, Shi C-H (2017) The ferredoxin-dependent glutamate synthase (OsFd-GOGAT) participates in leaf senescence and the nitrogen remobilization in rice. Mol Genet Genom 292(2):385–395

    Article  CAS  Google Scholar 

  • Zhang G, Ning Xu, Chen H, Wang G, Huang J (2018) OsMADS25 regulates root system development via auxin signalling in rice. Plant J 95(6):1004–1022

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279(5349):407–409

    Article  CAS  PubMed  Google Scholar 

  • Zhen X, Naimeng Z, Jinlei Y, Congyuan B, Fan X (2021) Autophagy mediates grain yield and nitrogen stress resistance by modulating nitrogen remobilization in rice. PLoS ONE 16(1):e0244996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received from any source during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsin Ali.

Ethics declarations

Conflict of interest

All authors have declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

All authors concur with the submission and publication of this manuscript.

Consent for publication

The manuscript has not been submitted to another journal and will not be published elsewhere until final decision is made by the journal; “Transgenic Research”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazish, T., Arshad, M., Jan, S.U. et al. Transporters and transcription factors gene families involved in improving nitrogen use efficiency (NUE) and assimilation in rice (Oryza sativa L.). Transgenic Res 31, 23–42 (2022). https://doi.org/10.1007/s11248-021-00284-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-021-00284-5

Keywords

Navigation