Skip to main content

Advertisement

Log in

Hepatic Macrophages Express Melanoma Differentiation-Associated Gene 5 in Nonalcoholic Steatohepatitis

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The activation of innate immune system is essential for the pathogenesis of nonalcoholic steatohepatitis (NASH). Among pattern recognition receptors, it is well-characterized that toll-like receptors (TLRs) are deeply involved in the development of NASH to reflect exposure of the liver to gut-driven endotoxins. In contrast, it has not been elucidated whether retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) are similarly implicated in the disease progression. In the present study, we examined the expression of melanoma differentiation-associated antigen 5 (MDA5), known to be a member of RLRs, in a diet-induced murine model of NASH. The liver tissues were collected from C57BL/6 J mice at 1, 3, and 6 weeks after choline-deficient l-amino acid-defined high-fat diet (CDAHFD), and the expression of MDA5 was analyzed by western blotting, immunofluorescence (IF), and real-time quantitative PCR (qPCR). The results of western blotting showed that hepatic expression of MDA5 was increased at 3 and 6 weeks. In IF, MDA5-positive cells co-expressed F4/80 and CD11b, indicating they were activated macrophages, and these cells began to appear at 1 week after CDAHFD. The mRNA expression of MDA5 was significantly upregulated at 1 week. Additionally, we performed IF using liver biopsy specimens collected from 11 patients with nonalcoholic fatty liver diseases (NAFLD), and found that MDA5-positive macrophages were detected in eight out of eleven patients. In an in vitro study, MDA5 was induced upon stimulation with lipopolysaccharide in murine bone marrow-derived macrophages and THP-1 cells. Our findings suggest that MDA5 may be involved in the inflammation of NASH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. White, D.L., F. Kanwal, and H.B. El-Serag. 2012. Association between nonalcoholic fatty liver disease and risk for hepatocellular cancer, based on systemic review. Clinical Gastroenterology and Hepatology 10 (12): 1342–1359.

    Article  Google Scholar 

  2. Tilg, H., and A.R. Moschen. 2010. Evolution of inflammation in nonalcoholic fatty liver disease: The multiple parallel hits hypothesis. Hepatology 52 (5): 1836–1846.

    Article  CAS  Google Scholar 

  3. Marra, F., and G. Svegliati-Baroni. 2018. Lipotoxicity and the gut-liver axis in NASH pathogenesis. Journal of Hepatology 68 (2): 280–295.

    Article  CAS  Google Scholar 

  4. Hui, J.M., A. Hodge, G.C. Farrell, J.G. Kench, A. Kriketos, and J. George. 2004. Beyond insulin resistance in NASH: TNF-alpha or adiponectin? Hepatology 40 (1): 46–54.

    Article  CAS  Google Scholar 

  5. Chassaing, B., L. Etienne-Mesmin, and A.T. Gewirtz. 2014. Microbiota-liver axis in hepatic disease. Hepatology 59 (1): 328–339.

    Article  CAS  Google Scholar 

  6. Wen, Y., J. Lambrecht, C. Ju, and F. Tacke. 2021. Hepatic macrophages in liver homeostasis and disease-diversity, plasticity and therapeutic opportunities. Cellular & Molecular Immunology 18 (1): 45–56.

    Article  CAS  Google Scholar 

  7. Seki, E., and D.A. Brenner. 2008. Toll-like receptors and adaptor molecules in liver disease: Update. Hepatology 48 (1): 322–335.

    Article  CAS  Google Scholar 

  8. Blériot, C., and F. Ginhoux. 2019. Understanding the heterogeneity of resident liver macrophages. Frontiers in Immunology 10: 2694.

    Article  Google Scholar 

  9. Karlmark, K.R., R. Weiskirchen, H.W. Zimmermann, N. Gassler, F. Ginhoux, C. Weber, M. Merad, T. Luedde, C. Trautwein, and F. Tacke. 2009. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology 50 (1): 261–274.

    Article  CAS  Google Scholar 

  10. Rivera, C.A., P. Adegboyega, N. van Rooijen, A. Tagalicud, M. Allman, and M. Wallace. 2007. Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. Journal of Hepatology 47 (4): 571–579.

    Article  CAS  Google Scholar 

  11. Miura, K., L. Yang, N. van Rooijen, H. Ohnishi, and E. Seki. 2012. Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. American Journal of Physiology. Gastrointestinal and Liver Physiology 302 (11): G1310-1321.

    Article  CAS  Google Scholar 

  12. Yoneyama, M., M. Kikuchi, K. Matsumoto, T. Imaizumi, M. Miyagishi, K. Taira, E. Foy, Y.M. Loo, M. Gale Jr., S. Akira, S. Yonehara, A. Kato, and T. Fujita. 2005. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. The Journal of Immunology 175 (5): 2851–2858.

    Article  CAS  Google Scholar 

  13. Crampton, S.P., J.A. Deane, L. Feigenbaum, and S. Bolland. 2012. Ifih1 gene dose effect reveals MDA5-mediated chronic type I IFN gene signature, viral resistance, and accelerated autoimmunity. The Journal of Immunology 188 (3): 1451–1459.

    Article  CAS  Google Scholar 

  14. Asdonk, T., M. Steinmetz, A. Krogmann, C. Ströcker, C. Lahrmann, I. Motz, K. Paul-Krahe, A. Flender, T. Schmitz, W. Barchet, G. Hartmann, G. Nickenig, and S. Zimmer. 2016. MDA-5 activation by cytoplasmic double-stranded RNA impairs endothelial function and aggravates atherosclerosis. Journal of Cellular and Molecular Medicine 20 (9): 1696–1705.

    Article  CAS  Google Scholar 

  15. Tatsuta, T., T. Imaizumi, T. Shimoyama, M. Sawaya, T. Kunikazu, T. Matsumiya, K. Satoh, and S. Fukuda. 2012. Expression of melanoma differentiation associated gene 5 is increased in human gastric mucosa infected with Helicobacter pylori. Journal of Clinical Pathology 65 (9): 839–843.

    Article  CAS  Google Scholar 

  16. Imaizumi, T., T. Aizawa-Yashiro, K. Tsuruga, H. Tanaka, T. Matsumiya, H. Yoshida, T. Tatsuta, F. Xing, R. Hayakari, and K. Satoh. 2012. Melanoma differentiation-associated gene 5 regulates the expression of a chemokine CXCL10 in human mesangial cells: Implications for chronic inflammatory renal diseases. Tohoku Journal of Experimental Medicine 228 (1): 17–26.

    Article  CAS  Google Scholar 

  17. Sadler, A.J. 2018. The role of MDA5 in the development of autoimmune disease. Journal of Leukocyte Biology 103 (2): 185–192.

    CAS  PubMed  Google Scholar 

  18. Nakashima, R., Y. Imura, S. Kobayashi, N. Yukawa, H. Yoshifuji, D. Kawabata, K. Ohmura, T. Usui, T. Fujii, K. Okawa, and T. Mimori. 2010. The RIG-I-like receptor IFIH1/MDA5 is a dermatomyositis-specific autoantigen identified by the anti-CADM-140 antibody. Rheumatol. 49 (3): 433–440.

    Article  CAS  Google Scholar 

  19. Nagashima, T., Y. Kamata, M. Iwamoto, H. Okazaki, N. Fukushima, and S. Minota. 2019. Liver dysfunction in anti-melanoma differentiation-associated gene 5 antibody-positive patients with dermatomyositis. Rheumatology International 39 (5): 901–909.

    Article  CAS  Google Scholar 

  20. Nissar, A.U., L. Sharma, M.A. Mudasir, L.A. Nazir, S.A. Umar, P.R. Sharma, R.A. Vishwakarma, and S.A. Tasduq. 2017. Chemical chaperone 4-phenyl butyric acid (4-PBA) reduces hepatocellular lipid accumulation and lipotoxicity through induction of autophagy. Journal of Lipid Research 58 (9): 1855–1868.

    Article  CAS  Google Scholar 

  21. Matsumoto, M., N. Hada, Y. Sakamaki, A. Uno, T. Shiga, C. Tanaka, T. Ito, A. Katsume, and M. Sudoh. 2013. An improved mouse model that rapidly develops fibrosis in non-alcoholic steatohepatitis. International Journal of Experimental Pathology 94 (2): 93–103.

    Article  CAS  Google Scholar 

  22. Schneider, C.A., W.S. Rasband, and K.W. Eliceiri. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods. 9: 671–675.

    Article  CAS  Google Scholar 

  23. Itoh, M., H. Kato, T. Suganami, K. Konuma, Y. Marumoto, S. Terai, H. Sakugawa, S. Kanai, M. Hamaguchi, T. Fukaishi, S. Aoe, K. Akiyoshi, Y. Komohara, M. Takeya, I. Sakaida, and Y. Ogawa. 2013. Hepatic crown-like structure: a unique histological feature in non-alcoholic steatohepatitis in mice and humans. PLoS ONE 8 (12): e82163.

    Article  Google Scholar 

  24. Rodriguez-Cruz, A., D. Vesin, L. Ramon-Luing, J. Zuñiga, V.F.J. Quesniaux, B. Ryffel, R. Lascurain, I. Garcia, and L. Chávez-Galán. 2019. CD3+ macrophages deliver proinflammatory cytokines by a CD3- and transmembrane TNF-dependent pathway and are increased at the BCG-infection site. Frontiers in Immunology 10: 2550.

    Article  CAS  Google Scholar 

  25. Imaizumi, T., T. Aizawa-Yashiro, S. Watanabe, T. Matsumiya, H. Yoshida, T. Tatsuta, F. Xing, P. Meng, R. Hayakari, K. Tsuruga, and H. Tanaka. 2013. TLR4 signaling induces retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5 in mesangial cells. Journal of Nephrology 26 (5): 886–893.

    Article  Google Scholar 

  26. Imaizumi, T., K. Murakami, K. Ohta, H. Seki, T. Matsumiya, P. Meng, R. Hayakari, F. Xing, T. Aizawa-Yashiro, T. Tatsuta, H. Yoshida, and H. Kijima. 2013. MDA5 and ISG56 mediate CXCL10 expression induced by toll-like receptor 4 activation in U373MG human astrocytoma cells. Neuroscience Research 76 (4): 195–206.

    Article  CAS  Google Scholar 

  27. Kawaguchi, S., H. Sakuraba, T. Haga, T. Matsumiya, K. Seya, T. Endo, N. Sawada, C. Iino, H. Kikuchi, H. Hiraga, S. Fukuda, and T. Imaizumi. 2019. Melanoma differentiation-associated gene 5 positively modulates TNF-α-induced CXCL10 expression in cultured HuH-7 and HLE cells. Inflammation 42 (6): 2095–2104.

    Article  CAS  Google Scholar 

  28. Li, H., Y. Zhou, H. Wang, M. Zhang, P. Qiu, M. Zhang, R. Zhang, Q. Zhao, and J. Liu. 2020. Crosstalk between liver macrophages and surrounding cells in nonalcoholic steatohepatitis. Frontiers in Immunology 11: 1169.

    Article  Google Scholar 

  29. Kinoshita, M., T. Uchida, A. Sato, M. Nakashima, S. Shono, Y. Habu, H. Miyazaki, S. Hiroi, and S. Seki. 2010. Characterization of two F4/80-positive Kupffer cell subsets by their function and phenotype in mice. Journal of Hepatology 53 (5): 903–910.

    Article  CAS  Google Scholar 

  30. Seidman, J.S., T.D. Troutman, M. Sakai, A. Gola, N.J. Spann, H. Bennett, C.M. Bruni, Z. Ouyang, R.Z. Li, X. Sun, B.T. Vu, M.P. Pasillas, K.M. Ego, D. Gosselin, V.M. Link, L.W. Chong, R.M. Evans, B.M. Thompson, J.G. McDonald, M. Hosseini, J.L. Witztum, R.N. Gemain, and C.K. Glass. 2020. Niche-specific reprogramming of epigenetic landscapes derives myeloid cell diversity in nonalcoholic steatohepatitis. Immunity 52 (6): 1057-1074.e7.

    Article  CAS  Google Scholar 

  31. Zheng, C., Q. Yang, C. Xu, P. Shou, J. Cao, M. Jiang, Q. Chen, G. Cao, Y. Han, F. Li, W. Cao, L. Zhang, L. Zhang, Y. Shi, and Y. Wang. 2015. CD11b regulates obesity-induced insulin resistance via limiting alternative activation and proliferation of adipose tissue macrophages. Proc Natl Acad Sci U S A. 112 (52): E7239–E7248.

    Article  CAS  Google Scholar 

  32. Nakashima, H., M. Nakashima, M. Kinoshita, M. Ikarashi, H. Miyazaki, H. Hanaka, J. Imaki, and S. Seki. 2016. Activation and increase of radio-sensitive CD11b+ recruited Kupffer cells / macrophages in diet-induced steatohepatitis in FGF5 deficient mice. Science and Reports 6: 34466.

    Article  CAS  Google Scholar 

  33. Mouries, J., P. Brescia, A. Silvestri, I. Spadoni, M. Sorribas, R. Wiest, E. Mileti, M. Galbiati, P. Invernizzi, L. Adorini, G. Penna, and M. Rescigno. 2019. Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development. Journal of Hepatology 71 (6): 1216–1228.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the JSPS KAKENHI Grant Number 20K08346.

Author information

Authors and Affiliations

Authors

Contributions

S. Kawaguchi: conceptualization, resources, investigation, writing—original draft. H. Sakuraba: conceptualization, resources. M. Horiuchi, J. Ding, T. Matsumiya, and K. Seya: investigation, writing—review and editing. C. Iino and T. Endo: investigation, resources. H. Kikuchi: conceptualization, resources. S. Yoshida and H. Hiraga: methodology. S. Fukuda: resources, supervision. T. Imaizumi: writing—review and editing, resources, project administration.

Corresponding author

Correspondence to Shogo Kawaguchi.

Ethics declarations

Ethics Approval and Consent to Participate

All animal experiments were conducted in accordance with the Guidelines for Animal Experimentation of the Hirosaki University (Permit number: M20016). In retrospective studies using human liver biopsy specimens, informed consent was obtained from all patients in an opt-out format. This study protocol was approved by the Ethics Committee of the Hirosaki University Graduate School of Medicine (Permit number: 2018–152), and the study was performed in accordance with the 1964 declaration of Helsinki and its later amendments.

Consent for Publication

Yes.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawaguchi, S., Sakuraba, H., Horiuchi, M. et al. Hepatic Macrophages Express Melanoma Differentiation-Associated Gene 5 in Nonalcoholic Steatohepatitis. Inflammation 45, 343–355 (2022). https://doi.org/10.1007/s10753-021-01550-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01550-8

KEY WORDS

Navigation