Skip to main content

Advertisement

Log in

Land use/land cover change and ecosystem services in the Bagmati River Basin, Nepal

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Delivery of ecosystem services is strongly affected by changes in the land use/land cover (LULC) of an area. In this study, we analyze spatiotemporal changes in LULC of the rapidly changing Bagmati River Basin (BRB) of Nepal during 1988–2018 using Landsat satellite images. We also quantify carbon storage in different physiographic regions and LULC classes using the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model and assess economic valuation of carbon using the benefit transfer method. According to our analysis, there were increases in urban/built-up (247.5%), barren land (109.5%), shrub land (32.4%), and declines in forest cover (− 6.2%), cultivated land (− 4.1%), waterbodies (− 30.3%), sand (− 29.2%), and grass cover (− 10.6%) during the study period. As a result of these changes in LULC, carbon storage declined from 31.4 million tons year−1 in 1988 (worth 157.0 million USD) to 30.8 million tons year−1 (154.1 million USD) in 2018 with the total loss of 2.9 million USD. The largest decline in stored carbon was observed in Tarai and Dun valleys, from 6.8 to 6.5 million tons (− 1.4 million USD) followed by Churia, from 7.8 to 7.6 million tons (- 1.1 million USD). Increases in carbon storage were observed in urban/built-up and shrub land areas and declines in cultivated land, forest, barren land, waterbodies and grass land. The results of LULC change and estimated carbon stock in BRB provides a baseline for planners and policy makers to formulate appropriate plans to sustainably manage the region’s land cover and to mitigate carbon loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated and analyzed can be made available on special reasonable request.

References

  • Acharya, R. P., Maraseni, T., & Cockfield, G. (2020). Assessing the financial contribution and carbon emission pattern of provisioning ecosystem services in Siwalik forests in Nepal: Valuation from the perspectives of disaggregated users. Land Use Policy, 95, 104647.

  • ADB. (2013). Environmental Impact Assessment, Bagmati River Basin Improvement Project; DHI Group for Asian Development Bank. Kathmandu, Nepal.

  • Adhikari, S., Baral, H., Sudhir Chitale, V., & Nitschke, C. R. (2019). Perceived changes in ecosystem services in the Panchase Mountain Ecological Region, Nepal. Resources, 8(4).

  • Alfonso, A., Zorondo-Rodríguez, F., & Simonetti, J. A. (2017). Perceived changes in environmental degradation and loss of ecosystem services, and their implications in human well-being. International Journal of Sustainable Development & World Ecology, 24, 561–574.

    Article  Google Scholar 

  • Amthor, J., Dale, V., Edwards, N., Garten, C., Gunderson, C., Hanson, P., Huston, M., King, A., Luxmoore, R., & McLaughlin, S. (1998). Terrestrial ecosystem responses to global change: A research strategy. Report by the Ecosystems Working Group. Environmental Sciences Division Publication.

  • Anderson, J. R., Hardy, E. E., Roach, J. T., & Witmer, R. E. (1976). A land use and land cover classification system for use with remote sensor data. Report, 964.

  • Arcidiacono, A., Ronchi, S., & Salata, S. (2015). Ecosystem services assessment using InVEST as a tool to support decision making process: Critical issues and opportunities. Pages 35-49. Springer International Publishing, Cham.

  • Arunyawat, S., & Shrestha, R. P. (2016). Assessing land use change and its impact on ecosystem services in northern Thailand. Sustainability, 8, 768.

    Article  Google Scholar 

  • Babbar D., Areendran, G., Sahana, M., Sarma, K., Raj, K., & Sivdas, A. (2021). Assessment and prediction of carbon sequestration using Markov chain and InVEST model in Sariska Tiger Reserve, India. Journal of Cleaner Production, 278, 123333.

  • Balatsky, A. V., Balatsky, G. I., & Borysov, S. S. (2015). Resource demand growth and sustainability due to increased world consumption. Sustainability, 7, 3430–3440.

    Article  Google Scholar 

  • Balthazar, V., Vanacker, V., Molina, A., & Lambin, E. F. (2015). Impacts of forest cover change on ecosystem services in high Andean mountains. Ecological Indicators, 48, 63–75.

    Article  Google Scholar 

  • Bastola, S., Lee, S., Shin, Y., & Jung, Y. (2020). An assessment of environmental impacts on the ecosystem services: Study on the Bagmati Basin of Nepal. Sustainability, 12, 8186.

    Article  Google Scholar 

  • BCN. (2012). Conserving biodiversity and delivering ecosystem services at Important Bird Areas in Nepal. Bird Conservation Nepal, Department of National Parks and Wildlife Conservation, and Bird Life International, Kathmandu and Cambridge, UK.

  • Bhatta, L. D., van Oort, B. E. H., Stork, N. E., & Baral, H. (2015). Ecosystem services and livelihoods in a changing climate: Understanding local adaptations in the Upper Koshi, Nepal. International Journal of Biodiversity Science, Ecosystem Services & Management, 11, 145–155.

    Article  Google Scholar 

  • Birch, J. C., Thapa, I., Balmford, A., Bradbury, R. B., Brown, C., Butchart, S. H. M., Gurung, H., Hughes, F. M. R., Mulligan, M., Pandeya, B., Peh, K. S. H., Stattersfield, A. J., Walpole, M., & Thomas, D. H. L. (2014). What benefits do community forests provide, and to whom? A rapid assessment of ecosystem services from a Himalayan forest, Nepal. Ecosystem Services, 8, 118–127.

    Article  Google Scholar 

  • BPP. (1995). Biodiversity Profile Project (BPP). Government of Nepal, Ministry of Forests and Soil Conservation, Kathmandu, Nepal.

  • Burkhard, B., Petrosillo, I., & Costanza, R. (2010). Ecosystem services – Bridging ecology, economy and social sciences. Ecological Complexity, 7, 257–259.

    Article  Google Scholar 

  • CBD & UNEP. (2018). “Forest-based solutions for accelerating achievement of the SDGs” thirteenth session of the united nations forum on forests (UNFF13). Secretariat of the Convention on Biological Diversity and United Nations Environment Programme.

  • CBS. (2014). Development of Manufacturing Industries in Nepal, Current State and Future Challenges. Government of Nepal, National Planning Commission Secretariat Central Bureau of Statistics, Kathmandu Nepal.

  • CBS. (2019). Environmental Statistics of Nepal., National Planning Commission, Secretariat Central Bureau of Statistics. Government of Nepal, Kathmandu, Nepal.

  • Chaudhary, R., Uprety, Y., & Rimal, S. (2015). Deforestation in Nepal: Causes, consequences and responses, 335–372.

  • Chettri, N., Aryal, K., Kandel, P., Karki, PS, Uddin, K. (2014). Ecosystem Services Assessment: A Framework for Himalica. International Centre for Integrated Mountain Development, Kathmandu, Nepal.

  • Clerici, N., Cote-Navarro, F., Escobedo, F. J., Rubiano, K., & Villegas, J. C. (2019). Spatio-temporal and cumulative effects of land use-land cover and climate change on two ecosystem services in the Colombian Andes. Science of The Total Environment, 685, 1181–1192.

    Article  CAS  Google Scholar 

  • Cong, W., Sun, X., Guo, H., Shan, R. (2020). Comparison of the SWAT and InVEST models to determine hydrological ecosystem service spatial patterns, priorities and trade-offs in a complex basin. Ecological Indicators, 112, 106089.

  • Costanza, R., d'Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., ONeill, R. V., Paruelo, J., Raskin, R. G., Sutton, P., & Van Den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387, 253–260.

    Article  CAS  Google Scholar 

  • Delphin, S., Escobedo, F., Abd-Elrahman, A., & Cropper, W. (2016). Urbanization as a land use change driver of forest ecosystem services. Land Use Policy, 54, 188–199.

    Article  Google Scholar 

  • Deng, L., Liu, G.-B., & Shangguan, Z.-P. (2014). Land-use conversion and changing soil carbon stocks in China’s ‘Grain-for-Green’ Program: a synthesis. Global Change Biology, 20, 3544–3556.

    Article  Google Scholar 

  • DFRS. (2015). State of Nepal's Forests. Forest Resource Assessment (FRA) Nepal, Department of Forest Research and Survey (DFRS). Kathmandu, Nepal.

  • Dhakal, S. (2008). Chapter 7 - Climate change and cities: The making of a climate friendly future. In P. Droege (Ed.), Urban Energy Transition, (pp. 173–192). Elsevier.

    Chapter  Google Scholar 

  • Dhital, Y. P., Tang, Q., & Shi, J. (2013). Hydroclimatological changes in the Bagmati River Basin, Nepal. Journal of Geographical Sciences, 23, 612–626.

    Article  Google Scholar 

  • Dixit, U., M., Pokhrel, A., Dixit, K., Rai, D. R., & Devkota, M. (2007). Flood disaster impact and responses in Nepal Tarai’s marginalised basins. Community Risk Assessment and Action Planning Project.

  • DWIP. (2014). Annual Disaster Review, editor. Department of Water Induced Prevention, Ministry of Irrigation, Government of Nepal (GoN).

  • Dziba, L., Nyingi, W., Oguge, N., Chandipo, R., Didier, T., Gandiwa, E., Kasiki, S., Kisanga, D., Kgosikoma, O. E., Osano, O., Tassin, J., Sanogo, S., Von Maltitz, G., Ghazi, H., Archibald, S., Gambiza, J., Ivey, P. Logo, P., Maoela, M., & Wilgen, B. (2019). Chapter 4 - Direct and indirect drivers of change in biodiversity and nature’s contributions to people.

  • Eigenbrod, F., Bell, V., Davies, H., Heinemeyer, A., Armsworth, P., & Gaston, K. (2011). The impact of projected increases in urbanization on ecosystem services. Proceedings of the Royal Society of London B: Biological Sciences, 20102754.

  • FAO. (2006). Global forest resource assessment 2005. Food and agriculture organization of the United Nations, Rome, Italy.

  • Francesconi, W., Srinivasan, R., Pérez-Miñana, E., Willcock, S., & Quintero, M. (2016). Using the Soil and Water Assessment Tool (SWAT) to model ecosystem services: A systematic review. Journal of Hydrology, 535, 625–636.

    Article  Google Scholar 

  • Fu, Q., Li, B., Hou, Y., Bi, X., & Zhang, X. (2017). Effects of land use and climate change on ecosystem services in Central Asia’s arid regions: A case study in Altay Prefecture, China. Science of The Total Environment, 607–608, 633–646.

    Article  CAS  Google Scholar 

  • Garrastazú, M. C., Mendonça, S. D., Horokoski, T. T., Cardoso, D. J., Rosot, M. A., Nimmo, E. R., & Lacerda, A. E. (2015). Carbon sequestration and riparian zones: Assessing the impacts of changing regulatory practices in Southern Brazil. Land Use Policy, 42, 329–339.

    Article  Google Scholar 

  • Ghimire, M. (2017). Historical Land Covers Change in the Chure-Tarai Landscape in the Last Six Decades: Drivers and Environmental Consequences. Pages 109-147 in A. Li, W. Deng, and W. Zhao, editors. Land Cover Change and Its Eco-environmental Responses in Nepal. Springer Singapore, Singapore.

  • GoN. (1996). Topographical Map, Ministry of Land Refor and Management (MoLRM). Government of Nepal, Survey department, Topographic Survey Branch, editor., Min Bhawan, Kathmandu, Nepal.

  • GoN. (2019). Emission Reductions Program Document (ER-PD), REDD Implementation Centre - REDD IC. Ministry of Forests and Soil Conservation (MoFSC), Government of Nepal, Babarmahal Kathamndu.

  • Gopal, B. (2015). Guidelines for rapid assessment of biodiversity and ecosystem services of wetlands. Page 134. Asia‐Pacific Network for Global Change Research (APN‐GCR), Kobe, Japan, and National Institute of Ecology, New Delhi.

  • Haack, B. N., & Rafter, A. (2006). Urban growth analysis and modeling in the Kathmandu Valley, Nepal. Habitat International, 30, 1056–1065.

    Article  Google Scholar 

  • Haines-Young, R., & Potschin, M. (2012). Common international classification of ecosystem services (CICES, Version 4.1). European Environment Agency, 33, 107.

  • Hauck, J., Winkler, K. J., & Priess, J. A. (2015). Reviewing drivers of ecosystem change as input for environmental and ecosystem services modelling. Sustainability of Water Quality and Ecology, 5, 9–30.

    Article  Google Scholar 

  • Houghton, R. A., House, J., Pongratz, J., Van Der Werf, G., DeFries, R., Hansen, M., Le Quéré, C., & Ramankutty, N. (2012). Carbon emissions from land use and land-cover change. Biogeosciences, 5125–5142.

  • Huang, C., Davis, L. S., & Townshend, J. R. G. (2002). An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23, 725–749.

    Article  Google Scholar 

  • Ibrahim Mahmoud, M., Duker, A., Conrad, C., Thiel, M., & Shaba Ahmad, H. (2016). Analysis of settlement expansion and urban growth modelling using geoinformation for assessing potential impacts of urbanization on climate in Abuja City. Nigeria. Remote Sensing, 8, 220.

    Article  Google Scholar 

  • IPCC. (2013). Summary for Policymakers. In: Climate Change (2013): The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, editor.

  • Ishtiaque, A., Shrestha, M., & Chhetri, N. (2017). Rapid urban growth in the Kathmandu Valley, Nepal: Monitoring land use land cover dynamics of a Himalayan city with Landsat imageries. Environments, 4, 72.

    Article  Google Scholar 

  • IUCN. (2013). Payment for Ecosystem Services in Nepal. Prospect, Practice and Process. IUCN Nepal, Kupondole, Lalitpur, Nepal.

  • Justine, M., Wanqin, Y., Wu, F., Tan, B., Khan, M., & Zhao, Y. (2015). Biomass stock and carbon sequestration in a chronosequence of Pinus massoniana plantations in the upper reaches of the Yangtze River. Forests, 6, 3665–3682.

    Article  Google Scholar 

  • Kannel, P. R., Lee, S., Lee, Y. S., Kanel, S. R., & Pelletier, G. J. (2007). Application of automated QUAL2Kw for water quality modeling and management in the Bagmati River, Nepal. Ecological Modelling, 202, 503–517.

    Article  Google Scholar 

  • Keeler, B. L., Hamel, P., McPhearson, T., Hamann, M. H., Donahue, M. L., Meza Prado, K. A., Arkema, K. K., Bratman, G. N., Brauman, K. A., Finlay, J. C., Guerry, A. D., Hobbie, S. E., Johnson, J. A., MacDonald, G. K., McDonald, R. I., Neverisky, N., & Wood, S. A. (2019). Social-ecological and technological factors moderate the value of urban nature. Nature Sustainability, 2, 29–38.

    Article  Google Scholar 

  • Kindu, M., Schneider, T., Teketay, D., & Knoke, T. (2016). Changes of ecosystem service values in response to land use/land cover dynamics in Munessa-Shashemene landscape of the Ethiopian highlands. Science of the Total Environment, 547, 137–147.

    Article  CAS  Google Scholar 

  • Li, A., Lei, G., Cao, X., Zhao, W., Deng, W., & Koirala, H. L. (2017a). Land cover change and its driving forces in Nepal since 1990.

  • Li, L., Song, Y., Wei, X., & Dong, J. (2020). Exploring the impacts of urban growth on carbon storage under integrated spatial regulation: A case study of Wuhan, China. Ecological Indicators, 111, 106064.

  • Li, W., Ciais, P., Peng, S., Yue, C., Wang, Y., Thurner, M., Saatchi, S. S., Arneth, A., Avitabile, V., Carvalhais, N., Harper, A. B., Kato, E., Koven, C., Liu, Y. Y., Nabel, J. E. M. S., Pan, Y., Pongratz, J., Poulter, B., Pugh, T. A. M., … Zaehle, S. (2017b). Land-use and land-cover change carbon emissions between 1901 and 2012 constrained by biomass observations. Biogeosciences, 14, 5053–5067.

    Article  Google Scholar 

  • Liu, W., Zhu, J., Jia, Q., Zheng, X., Li, J., Lou, X., & Hu, L. (2014). Carbon sequestration effects of shrublands in Three-North Shelterbelt Forest region, China. Chinese Geographical Science, 24, 444–453.

    Article  Google Scholar 

  • Liu, X., Wang, S., Wu, P., Feng, K., Hubacek, K., Li, X., & Sun, L. (2019). Impacts of Urban Expansion on Terrestrial Carbon Storage in China. Environmental Science & Technology, 53, 6834–6844.

    Article  CAS  Google Scholar 

  • Lüke, A., & Hack, J. (2018). Comparing the applicability of commonly used hydrological ecosystem services models for integrated decision-support. Sustainability, 10, 346.

    Article  Google Scholar 

  • Lyu, R., Zhang, J., Xu, M., & Li, J. (2018). Impacts of urbanization on ecosystem services and their temporal relations: A case study in Northern Ningxia, China. Land Use Policy, 77, 163–173.

    Article  Google Scholar 

  • Makido, Y., Dhakal, S., & Yamagata, Y. (2012). Relationship between urban form and CO2 emissions: Evidence from fifty Japanese cities. Urban Climate, 2, 55–67.

    Article  Google Scholar 

  • Martínez-López, J., Bagstad, K. J., Balbi, S., Magrach, A., Voigt, B., Athanasiadis, I., Pascual, M., Willcock, S., & Villa, F. (2019). Towards globally customizable ecosystem service models. Science of The Total Environment, 650, 2325–2336.

    Article  CAS  Google Scholar 

  • McKinney, M. L. (2002). Urbanization, Biodiversity, and Conservation: The impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems. BioScience, 52, 883–890.

    Article  Google Scholar 

  • MEA. (2005). Ecosystems and human wellbeing: Biodiversity synthesis,. Millennium Ecosystem Assessment, World Resources Institute, Washington, DC.

  • Mishra, B. K., Regmi, R. K., Masago, Y., Fukushi, K., Kumar, P., & Saraswat, C. (2017). Assessment of Bagmati river pollution in Kathmandu Valley: Scenario-based modeling and analysis for sustainable urban development. Sustainability of Water Quality and Ecology, 9–10, 67–77.

    Article  Google Scholar 

  • Mitchell, M., & Roca Iglesias, A. (2020). Urban agriculture in Kathmandu as a catalyst for the civic inclusion of migrants and the making of a greener city. Frontiers of Architectural Research, 9, 169–190.

    Article  Google Scholar 

  • Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66, 247–259.

    Article  Google Scholar 

  • Mubea, K., & Menz, G. (2012). Monitoring land-use change in Nakuru (Kenya) using multi-sensor satellite data. Advances in Remote Sensing, 01, 74–84.

    Article  Google Scholar 

  • Nelson, E., Mendoza, G., Regetz, J., Polasky, S., Tallis, H., Cameron, D., Chan, K. M., Daily, G. C., Goldstein, J., Kareiva, P. M., Lonsdorf, E., Naidoo, R., Ricketts, T. H., & Shaw, M. (2009). Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Frontiers in Ecology and the Environment, 7, 4–11.

    Article  Google Scholar 

  • Pal, M., & Mather, P. M. (2005). Support vector machines for classification in remote sensing. International Journal of Remote Sensing, 26, 1007–1011.

    Article  Google Scholar 

  • Paudel, A. (2003). Environmental management of the Bagmati River Basin. UNEP/EIA, Training Resource Manual. Case studies from developing countries, 269–279.

  • Paudyal, K., Baral, H., Bhandari, S., Bhandari, A., & Keenan, R. (2019). Spatial assessment of the impact of land use and land cover change on supply of ecosystem services in Phewa watershed, Nepal. Ecosystem Services, 36, 100895.

  • Paudyal, K., Baral, H., Burkhard, B., Bhandari, S. P., & Keenan, R. J. (2015). Participatory assessment and mapping of ecosystem services in a data-poor region: Case study of community-managed forests in central Nepal. Ecosystem Services, 13, 81–92.

    Article  Google Scholar 

  • Payne, C. (2016). Legal liability for environmental damage: The United Nations Compensation Commission and the 1990-1991 Gulf War, 719–760.

  • Peh, K. S. H., Thapa, I., Basnyat, M., Balmford, A., Bhattarai, G. P., Bradbury, R. B., Brown, C., Butchart, S. H. M., Dhakal, M., Gurung, H., Hughes, F. M. R., Mulligan, M., Pandeya, B., Stattersfield, A. J., Thomas, D. H. L., Walpole, M., & Merriman, J. C. (2016). Synergies between biodiversity conservation and ecosystem service provision: Lessons on integrated ecosystem service valuation from a Himalayan protected area, Nepal. Ecosystem Services Part B, 22, 359–369.

  • Petley, D., Hearn, G., Hart, A., Rosser, N. J., Dunning, S., Oven, K. J., & Mitchell, W. (2007). Trends in landslide occurrence in Nepal. Natural Hazards, 43, 23–44.

    Article  Google Scholar 

  • Pokhrel, B. K. (2018). Impact of land use change on flow and sediment yields in the Khokana Outlet of the Bagmati River, Kathmandu, Nepal. Hydrology, 5, 22.

    Article  Google Scholar 

  • Polasky, S., Nelson, E., Pennington, D., & Johnson, K. (2011). The impact of land-use change on ecosystem services, biodiversity and returns to landowners: A case study in the state of Minnesota.

  • Polasky, S., Nelson, E., Pennington, D., & Johnson, K. A. (2010). The impact of land-use change on ecosystem services, biodiversity and returns to landowners: A case study in the state of Minnesota. Environmental and Resource Economics, 48, 219–242.

    Article  Google Scholar 

  • Posner, S., Verutes, G., Koh, I., Denu, D., & Ricketts, T. (2016). Global use of ecosystem service models. Ecosystem Services, 17, 131–141.

    Article  Google Scholar 

  • Rana, M. M. P. (2011). Urbanization and sustainability: challenges and strategies for sustainable urban development in Bangladesh. Environment, Development and Sustainability, 13, 237–256.

    Article  Google Scholar 

  • Reyers, B., O'Farrell, P., Cowling, R., Egoh, B., Maitre, D., & Vlok, J. (2009). Ecosystem services, land-cover change, and stakeholders: Finding a sustainable foothold for a semiarid biodiversity hotspot. Ecology and Society, 14.

  • Rijal, S., Rimal, B., & Sloan, S. (2018). Flood hazard mapping of a rapidly urbanizing city in the foothills (Birendranagar, Surkhet) of Nepal. Land, 7, 60.

    Article  Google Scholar 

  • Rijal, S., Rimal, B., Stork, N., & Sharma, H. P. (2020). Quantifying the drivers of urban expansion in Nepal. Environmental Monitoring and Assessment, 192, 633.

    Article  Google Scholar 

  • Rijal, S., Techato, K., Gyawali, S., Stork, N., Dangal, M. R., & Sinutok, S. (2021). Forest cover change and ecosystem services: A case study of community forest in Mechinagar and Buddhashanti Landscape (MBL), Nepal. Environmental Management., 67, 963–973.

    Google Scholar 

  • Rimal, B., Rijal, S., & Kunwar, R. (2019a). Comparing support vector machines and maximum likelihood classifiers for mapping of urbanization. Journal of the Indian Society of Remote Sensing.

  • Rimal, B., Sharma, R., Kunwar, R., Keshtkar, H., Stork, N. E., Rijal, S., Rahman, S. A., & Baral, H. (2019b). Effects of land use and land cover change on ecosystem services in the Koshi River Basin, Eastern Nepal. Ecosystem Services, 38, 100963.

  • Rimal, B., Zhang, L., Keshtkar, H., Haack, B. N., Rijal, S., & Zhang, P. (2018a). Land use/land cover dynamics and modeling of urban land expansion by the integration of cellular automata and Markov chain. ISPRS International Journal of Geo-Information, 7, 154.

    Article  Google Scholar 

  • Rimal, B., Zhang, L., Stork, N., Sloan, S., & Rijal, S. (2018b). Urban expansion occurred at the expense of agricultural lands in the Tarai Region of Nepal from 1989 to 2016. Sustainability, 10, 1341.

    Article  Google Scholar 

  • Rousta, I., Sarif, M. O., Gupta, R. D., Olafsson, H., Ranagalage, M., Murayama, Y., Zhang, H., & Mushore, T. D. (2018). Spatiotemporal analysis of land use/land cover and its effects on surface urban heat island using Landsat data: A case study of Metropolitan City Tehran (1988–2018). Sustainability, 10, 4433.

    Article  Google Scholar 

  • Sallustio, L., De Toni, A., Strollo, A., Di Febbraro, M., Gissi, E., Casella, L., Geneletti, D., Munafò, M., Vizzarri, M., & Marchetti, M. (2017). Assessing habitat quality in relation to the spatial distribution of protected areas in Italy. Journal of Environmental Management, 201, 129–137.

    Article  Google Scholar 

  • Schneider, A. (2012). Monitoring land cover change in urban and peri-urban areas using dense time stacks of Landsat satellite data and a data mining approach. Remote Sensing of Environment, 124, 689–704.

    Article  Google Scholar 

  • Seto, K. C., Güneralp, B., & Hutyra, L. R. (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences, 109, 16083–16088.

    Article  CAS  Google Scholar 

  • Sharma, B., Rasul, G., & Chettri, N. (2015). The economic value of wetland ecosystem services: Evidence from Koshi Tappu Wildlife Reserve, Nepal. Ecosystem Services, 12, 84–93.

    Article  Google Scholar 

  • Sharma, R., Rimal, B., Baral, H., Nehren, U., Paudyal, K., Sharma, S., Rijal, S., Ranpal, S., Acharya, R. P., Alenazy, A. A., & Kandel, P. (2019). Impact of land cover change on ecosystem services in a tropical forested landscape. Resources, 8, 18.

    Article  Google Scholar 

  • Sharma, R. H., & Shakya, N. M. (2006). Hydrological changes and its impact on water resources of Bagmati watershed, Nepal. Journal of Hydrology, 327, 315–322.

    Article  Google Scholar 

  • Sharp, R., Tallis, H., Ricketts, T., Guerry, A., Wood, S., Chaplin-Kramer, R., Nelson, E., Ennaanay, D., Wolny, S., Olwero, N., Vigerstol, K., Pennington, D., Mendoza, G., Aukema, J., Foster, J., Forrest, J., Cameron, D., Arkema, K., Lonsdorf, E., Kennedy, C., Verutes, G., Kim, C. K., Guannel, G., Papenfus, M., Toft, J., Marsik, M., Bernhardt, J., Griffin, R., Glowinski, K., Chaumont, N., Perelman, A., Lacayo, M., Mandle, L., Hamel, P., Vogl, A. L., Rogers, L., Bierbower, W., Denu, D., & Douglass, J. (2016). InVEST +VERSION+ User’s Guide. Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund.

  • Sharps, K., Masante, D., Thomas, A., Jackson, B., Redhead, J., May, L., Prosser, H., Cosby, B., Emmett, B., & Jones, L. (2017). Comparing strengths and weaknesses of three ecosystem services modelling tools in a diverse UK river catchment. Science of The Total Environment, 584–585, 118–130.

    Article  CAS  Google Scholar 

  • Shrestha, B., Sitaula, B., Singh, B., & Bajracharya, R. (2004). Soil organic carbon stocks in soil aggregates under different land use systems in Nepal. Nutrient Cycling in Agroecosystems, 70, 201–213.

    Article  CAS  Google Scholar 

  • Sohel, M. S. I., Ahmed Mukul, S., & Burkhard, B. (2015). Landscape׳s capacities to supply ecosystem services in Bangladesh: A mapping assessment for Lawachara National Park. Ecosystem Services, 12, 128–135.

    Article  Google Scholar 

  • Song, W., & Deng, X. (2017). Land-use/land-cover change and ecosystem service provision in China. Science of The Total Environment, 576, 705–719.

    Article  CAS  Google Scholar 

  • Song, X.-P., Hansen, M. C., Stehman, S. V., Potapov, P. V., Tyukavina, A., Vermote, E. F., & Townshend, J. R. (2018). Global land change from 1982 to 2016. Nature, 560, 639–643.

    Article  CAS  Google Scholar 

  • Sothe, C., Almeida, C., Liesenberg, V., & Schimalski, M. (2017). Evaluating Sentinel-2 and Landsat-8 data to map sucessional forest stages in a subtropical forest in southern Brazil. Remote Sensing, 9, 838.

    Article  Google Scholar 

  • Su, S., Xiao, R., Jiang, Z., & Zhang, Y. (2012). Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Applied Geography, 34, 295–305.

    Article  Google Scholar 

  • Syahrinudin. (2005). The potential of oil palm and forest plantations for carbon sequestration on degraded land in Indonesia: to 25; Pages: 26 to 50; Pages: 51 to 75; Pages: 76 to 100; Pages: 101 to 125. Cuvillier Verlag.

  • Tao, Y., Li, F., Wang, R., & Zhao, D. (2015). Effects of land use and cover change on terrestrial carbon stocks in urbanized areas: a study from Changzhou, China. Journal of Cleaner Production, 103, 651–657.

    Article  Google Scholar 

  • Thakur, J. K., Neupane, M., & Mohanan, A. A. (2017). Water poverty in upper Bagmati River Basin in Nepal. Water Science, 31, 93–108.

    Article  Google Scholar 

  • Thompson, I. D., Okabe, K., Tylianakis, J. M., Kumar, P., Brockerhoff, E. G., Schellhorn, N. A., Parrotta, J. A., & Nasi, R. (2011). Forest biodiversity and the delivery of ecosystem goods and services: Translating science into policy. BioScience, 61, 972–981.

    Article  Google Scholar 

  • Tolessa, T., Senbeta, F., & Abebe, T. (2017). Land use/land cover analysis and ecosystem services valuation in the central highlands of Ethiopia. Forests, Trees and Livelihoods, 26, 111–123.

    Article  Google Scholar 

  • Vale, T. R., & Vale, G. R. (1976). Suburban bird populations in west-central California. Journal of Biogeography, 3, 157–165.

    Article  Google Scholar 

  • Vashum, K. T, & Jayakumar, S. (2012). Methods to estimate above-ground biomass and carbon stock in natural forests - A review. Journal of Ecosystem & Ecography, 2.

  • Vilà, M., Basnou, C., Pyšek, P., Josefsson, M., Genovesi, P., Gollasch, S., Nentwig, W., Olenin, S., Roques, A., Roy, D., Hulme, P. E., & Partners, D. (2010). How well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Frontiers in Ecology and the Environment, 8, 135–144.

    Article  Google Scholar 

  • Wang, S. W., Gebru, B. M., Lamchin, M., Kayastha, R. B., & Lee, W.-K. (2020). Land use and land cover change detection and prediction in the Kathmandu District of Nepal using remote sensing and GIS. Sustainability, 12, 3925.

    Article  Google Scholar 

  • Wani, N., Velmurugan, A., & Dadhwal, V. (2010). Assessment of agricultural crop and soil carbon pools in Madhya Pradesh, India. Tropical Ecology, 51, 11–19.

    CAS  Google Scholar 

  • Xiong, J., Thenkabail, P., Tilton, J., Gumma, M., Teluguntla, P., Oliphant, A., Congalton, R., Yadav, K., & Gorelick, N. (2017). Nominal 30-m cropland extent map of continental africa by integrating pixel-based and object-based algorithms using Sentinel-2 and Landsat-8 data on Google Earth Engine. Remote Sensing, 9, 1065.

    Article  Google Scholar 

  • Yan, F., Zhang, S., Liu, X., Chen, D., Chen, J., Bu, K., Yang, J., & Chang, L. (2016). The effects of spatiotemporal changes in land degradation on ecosystem services values in Sanjiang Plain, China. Remote Sensing, 8, 917.

    Article  Google Scholar 

  • Yirsaw, E. (2016). Efect of temporal land use/land cover changes on ecosystem services value in coastal area of China: The case of Su-XI-Chang Region. Applied Ecology and Environmental Research, 14, 409–422.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhagawat Rimal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1 User’s accuracy, producer’s accuracy, and overall accuracy for individual LULC during 1988 and 2018

Year

1988

2018

LULC

UA

PA

UA

PA

Urban/built-up

84.4

85.9

91.1

92.1

Cultivated land

86.5

83.3

87.8

86.0

Forest land

88.5

87.6

92.0

91.1

Shrub land

86.8

85.4

91.3

90.8

Barren land

88.6

87.6

94.0

90.5

Sand area

87.3

86.1

88.5

89.3

Waterbody

85.9

90.7

89.4

94.2

Grass land

86.0

88.4

90.1

90.5

OA

87%

91%

Appendix 2 LULC change in Bagmati River Basin during 1998–2018 (area in km2 and %)

LULC

Area in km2 1988

Area in km2 2018

Change 1988–2018

Mid-Hill (Lesser Himalaya and Mahabharat)

 

Urban/built-up

47.1

166.7

119.7

Cultivated land

689.1

589.3

−99.7

Forest land

921.6

912.3

−9.3

Shrub land

125.0

146.8

21.8

Barren land

7.3

14.6

7.3

Sand area

27.8

16.1

−11.7

Waterbody

19.4

14.3

−5.2

Grass land

25.8

3.0

−22.8

Total

1863.1

1863.1

 

Churia (Siwalik)

 

Urban/built-up

0.3

1.8

1.6

Cultivated land

105.3

122.5

17.2

Forest land

465.1

431.8

−33.3

Shrub land

21.4

47.7

26.3

Barren land

1.9

3.9

2.0

Sand area

53.6

44.6

−9.0

Waterbody

10.1

9.3

−0.8

Grass land

6.6

2.7

−3.9

Total

664.3

664.3

 

Tarai and Dun Valley

 

Urban/built-up

6.7

20.2

13.5

Cultivated land

337.5

373.0

35.6

Forest land

387.5

359.0

−28.5

Shrub land

17.9

23.5

5.6

Barren land

0.8

2.3

1.4

Sand area

111.0

75.4

−35.5

Waterbody

36.9

22.8

−14.1

Grass land

10.8

32.9

22.1

Total

909.0

909.0

 

Grand total

3436.3

3436.3

 

Appendix 3 Estimating carbon in different LULC classes within Bagmati River Basin during 1988–2018

 

1988

2018

Change

LULC classes

C_above

C_below

C_soil

C_dead

(Carbon in tons)

Cost of carbon in USD

C_above

C_below

C_soil

C_dead

(Carbon in tons)

Cost of carbon in USD

1988–2018

Change %

Urban/built-up

26,705.2

   

26,705.3

133,526.5

93,244.9

   

93,245

466,225

66,539.7

249.16

Cultivated land

446,860

 

746,652

 

1,193,512

5,967,560

429,007.1

 

716,822

 

1,145,829

5,729,145

−47,682.9

−3.99

Forest

16,655,181

 

11,322,897

133,085.3

28,111,164

140,555,820

16,031,805

 

10,899,099

128,104.1

27,059,009

135,295,045

−1,052,154.4

−3.74

Shrub

94,742.7

 

1,614,050.1

7338.1

1,716,130.7

8,580,653.5

123,065.6

 

2,096,562.7

9531.8

2,229,159.9

11,145,800

513,029.2

29.89

Barren land

72,736.4

80,818.2

  

153,554.6

767,773

55,563.7

61,737.5

  

117,301.2

586,506

−36,253.4

−23.6

Waterbody

690

   

690

3450

463

   

463

2315

−227

−32.9

Grass

  

189,794.9

 

189,794.9

948,974.5

  

169,630.6

 

169,630.6

848,153

−20,164.3

−10.62

Total

    

31,391,551

156,957,755

    

30,814,638

154,073,190

−576,913.1

−1.83

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rijal, S., Rimal, B., Acharya, R.P. et al. Land use/land cover change and ecosystem services in the Bagmati River Basin, Nepal. Environ Monit Assess 193, 651 (2021). https://doi.org/10.1007/s10661-021-09441-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09441-z

Keywords

Navigation