Skip to main content
Log in

Impact of MgO nanofiller-addition on electrical and mechanical properties of glass fiber reinforced epoxy nanocomposites

  • Original paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Glass fiber reinforced epoxy nanocomposites are synthesized with different weight percentages of MgO nanofillers to improve their mechanical and electrical properties, especially for aerospace and high voltage insulation applications. Static contact angle studies have shown that 3 wt% MgO nanofiller added specimen has a higher contact angle, indicating a better surface profile. Marginal increment in real relative permittivity and dielectric loss tangent have been observed with the inclusion of MgO nanofillers. Pulsed Electro Acoustic (PEA) method was adopted for space charge measurement, which has shown hetero-charge accumulation in all the tested specimens. The amount of accumulated space charge density during poling period is lower and its decay rate during depoling is higher in 3 wt% MgO added specimen. Reduction in initial surface potential and increment in its lst decay rate was noticed after incorporation of MgO nanofillers. 3 wt% specimen has reflected a higher surface potential decay rate with reduced trap depth in comparison with other samples. Dynamic Mechanical Analysis (DMA) studies have shown increased storage modulus with a slight reduction in tan δ value after the inclusion of MgO nanofillers. In addition, the glass transition temperature and the activation energy of 3 wt% specimen were found to be higher compared to other specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Zhao Y, Yang K, Zhang S, Du B, Wang X, He Y (2021) Epoxy resin insulating composites for vacuum cast electrical insulators of GIS. In polymer insulation applied for HVDC transmission. Springer, Singapore

    Google Scholar 

  2. Kim HJ, Kim WJ, Kim SH (2015) A study on the insulation of the termination for HTS cable in liquid nitrogen. J Supercond Nov Magn 28:615–618

    Article  CAS  Google Scholar 

  3. Tanaka T, Imai T (2017) Advanced nanodielectrics: fundamentals and applications. Pan Stanford Publishing, Singapore

    Book  Google Scholar 

  4. Zaman I, Manshoor B, Khalid A, Araby S (2014) From clay to graphene for polymer nanocomposites-a survey. J Polym Res 21:1–11

    Article  CAS  Google Scholar 

  5. Akderya T, Çevik M (2018) Investigation of thermal-oil environmental ageing effect on mechanical and thermal behaviours of E-glass fibre/epoxy composites. J Polym Res 25:1–21

    Article  CAS  Google Scholar 

  6. Ortiz RA, Valdez AEG, Padilla EEG, Flores RA, Muñoz JFE (2016) Development of a photocurable glass-fiber reinforced epoxy-amine/thiol-ene composite. J Polym Res 23:30

    Article  Google Scholar 

  7. Xu M, Yang X, Zhao R, Liu X (2013) Copolymerizing behavior and processability of benzoxazine/epoxy systems and their applications for glass fiber composite laminates. J Appl Polym Sci 128:1176–1184

    Article  CAS  Google Scholar 

  8. Grimmer CS, Dharan CKH (2008) High-cycle fatigue of hybrid carbon nanotube/glass fiber/polymer composites. J Mater Sci 43:4487–4492

    Article  CAS  Google Scholar 

  9. Ribeiro B, Corredor JAR, de Paula Santos LF, Gomes NAS, Rezende MC (2021) Electrical conductivity and electromagnetic shielding performance of glass fiber-reinforced epoxy composites with multiwalled carbon nanotube buckypaper interlayer. J Mater Sci: Mater Electron 32:1962–1976

    CAS  Google Scholar 

  10. Mohamed MG, Kuo SW (2019) Functional silica and carbon nanocomposites based on polybenzoxazines. Macromol Chem Phys 220:1800306

    Article  Google Scholar 

  11. Veerakumar VGS, Shanmugavel BP, Harish S (2021) On the influence of the functionalization of graphene nanoplatelets and glass fiber on the mechanical properties of GFRP composites. Appl Compos Mater 1–26

  12. Andritsch T, Kochetov R, Morshuis P, Smit JJ (2010) Dielectric properties and space charge behavior of MgO-epoxy nanocomposites. In: 2010 10th IEEE International Conference on Solid Dielectrics 1–4

  13. Wu K, Wang Z, Zhao C, Huang Y, Li J, Li S (2018) Surface treeing and segmented worm model of tracking behavior in MgO/epoxy nanocomposites. IEEE Trans Dielectr Electr Insul 25:2067–2075

    Article  CAS  Google Scholar 

  14. Xing Z, Zhang C, Hu X, Guo P, Zhang J, Wang Z, Wu K, Li J (2019) Surface tracking of MgO/epoxy nanocomposites: effect of surface hydrophobicity. Appl Sci 9:413

    Article  CAS  Google Scholar 

  15. Hornak J, Trnka P, Kadlec P, Michal O, Mentlík V, Šutta P, Csányi GM, Tamus ZÁ (2018) Magnesium oxide nanoparticles: dielectric properties, surface functionalization and improvement of epoxy-based composites insulating properties. Nanomaterials 8:381

    Article  Google Scholar 

  16. Andritsch T, Kochetov R, Lennon B, Morshuis PH and Smit JJ (2011) Space charge behavior of magnesium oxide filled epoxy nanocomposites at different temperatures and electric field strengths. Electrical Insulation Conference (EIC) 136–140

  17. Brockschmidt A (1999) Electrical environments in aerospace applications. In: IEEE International Electric Machines and Drives Conference. IEMDC'99. Proceedings, Seattle, USA

  18. Desai BMA, Mishra P, Vasa NJ, Sarathi R, Imai T (2018) Understanding the performance of corona aged epoxy nano micro composites. Micro Nano Lett 13:1280–1285

    Article  CAS  Google Scholar 

  19. Chen X, Wang X, Wu K, Peng ZR, Cheng YH, Tu DM (2012) Effect of voltage reversal on space charge and transient field in LDPE films under temperature gradient. IEEE Trans Dielectr Electr Insul 19:140–149

    Article  CAS  Google Scholar 

  20. Noah PM, Zavattoni L, Agnel S, Notingher P, Laurentie JC, Guille O, Vinson P and Girodet A (2017) Measurement of space charge distribution in alumina-filled epoxy resin for application in HVDC GIS. In: 2017 IEEE Conference on Electrical Insulation and Dielectric Phenomenon (CEIDP), Fort Worth, TX, USA

  21. Du BX, Li A (2017) Effects of DC and pulse voltage combination on surface charge dynamic behaviors of epoxy resin. IEEE Trans Dielectr Electr Insul 24:2025–2033

    Article  CAS  Google Scholar 

  22. Garrett HB, Whittlesey AC (2000) Spacecraft charging, an update. IEEE Trans Plasma Sci 28:2017–2028

    Article  Google Scholar 

  23. Goyanes SN, König PG, Marconi JD (2003) Dynamic mechanical analysis of particulate-filled epoxy resin. J Appl Polym Sci 88:883–892

    Article  CAS  Google Scholar 

  24. Ahmed NH, Srinivas NN (1997) Review of space charge measurements in dielectrics. IEEE Trans Dielectr Electr Insul 4:644–656

    Article  CAS  Google Scholar 

  25. Ramezanzadeh B, Attar MM, Farzam M (2011) A study on the anticorrosion performance of the epoxy–polyamide nanocomposites containing ZnO nanoparticles. Prog Org Coat 72:410–422

    Article  CAS  Google Scholar 

  26. Zhang D, Wang L, Qian H, Li X (2016) Superhydrophobic surfaces for corrosion protection: a review of recent progresses and future directions. J Coat Technol Res 13:11–29

    Article  Google Scholar 

  27. Ammar S, Ramesh K, Vengadaesvaran B, Ramesh S, Arof AK (2016) Formulation and characterization of hybrid polymeric/ZnO nanocomposite coatings with remarkable anti-corrosion and hydrophobic characteristics. J Coat Technol Res 13:921–930

    Article  CAS  Google Scholar 

  28. Peng W, Huang X, Yu J, Jiang P, Liu W (2010) Electrical and thermophysical properties of epoxy/aluminum nitride nanocomposites: Effects of nanoparticle surface modification. Compos Part A: Appl Sci Manuf 41:1201–1209

    Article  Google Scholar 

  29. Saha D, Anisimov AG, Groves RM, Tsekmes IA, Morshuis PHF, Kochetov R (2017) Epoxy-hBN nanocomposites: a study on space charge behavior and effects upon material. IEEE Trans Dielectr Electr Insul 24:1718–1725

    Article  CAS  Google Scholar 

  30. Wendel T, Kindersberger J, Hering M (2018) Influence of field strength and temperature on the space charge distribution in epoxy under DC stress. In: 2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Athens, Greece

  31. Dissado LA, Laurent C, Montanari GC, Morshuis PHF (2005) Demonstrating a threshold for trapped space charge accumulation in solid dielectrics under DC field. IEEE Trans Dielectr Electr Insul 12:612–620

    Article  Google Scholar 

  32. Babu MS, Velmurugan R, Sarathi R, Imai T (2021) Influence of water ageing on variation in space charge and thermo-mechanical properties of epoxy micro-nano composites. IET Sci Meas Technol 15:44–60

    Article  Google Scholar 

  33. Zhou TC, Chen G, Liao RJ, Xu Z (2011) Charge trapping and detrapping in polymeric materials: trapping parameters. J Appl Phys 110:043724

    Article  Google Scholar 

  34. Katayama J, Ohki Y, Fuse N, Kozako M, Tanaka T (2013) Effects of nanofiller materials on the dielectric properties of epoxy nanocomposites. IEEE Trans Dielectr Electr Insul 20:157–165

    Article  CAS  Google Scholar 

  35. Simmons JG, Tam MC (1973) Theory of isothermal currents and the direct determination of trap parameters in semiconductors and insulators containing arbitrary trap distributions. Phys Rev B 7:3706

    Article  CAS  Google Scholar 

  36. Gao Y, Li Z, Wang M, Du B (2019) Magnetic field induced variation in surface charge accumulation behavior on epoxy/Al2O3 nanocomposites under DC stress. IEEE Trans Dielectr Electr Insul 26:859–867

    Article  CAS  Google Scholar 

  37. Adachi T, Araki W, Nakahara T, Yamaji A, Gamou M (2002) Fracture toughness of silica particulate-filled epoxy composite. J Appl Polym Sci 86:2261–2265

    Article  CAS  Google Scholar 

  38. Heijboar T, Meier DJ (1978) Introduction to molecular basics of transitions and relaxations. Gordon & Breach, New York

    Google Scholar 

  39. Peddamallu N, Nagaraju G, Sridharan K, Velmurugan R, Vasa NJ, Nakayama T, Sarathi R (2019) Understanding the electrical, thermal, and mechanical properties of epoxy magnesium oxide nanocomposites. IET Sci Meas Technol 13:632–639

    Article  Google Scholar 

  40. Guvvala N, Rao BN, Sarathi R (2019) Effect of gamma irradiation on space charge and charge trap characteristics of epoxy–MgO nanocomposites. Micro Nano Lett 14:1334–1339

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author (RS) wishes to thank CPRI, Bangalore, India for sponsoring the project (NPP/2016/TR/1/27042016) on nanocomposites

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramanujam Sarathi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naveen, J., Babu, M.S. & Sarathi, R. Impact of MgO nanofiller-addition on electrical and mechanical properties of glass fiber reinforced epoxy nanocomposites. J Polym Res 28, 377 (2021). https://doi.org/10.1007/s10965-021-02746-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02746-0

Keywords

Navigation