Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biomaterial-based antimicrobial therapies for the treatment of bacterial infections

Abstract

The rise in antibiotic-resistant bacteria, including strains that are resistant to last-resort antibiotics, and the limited ability of antibiotics to eradicate biofilms have necessitated the development of alternative antibacterial therapeutics. Antibacterial biomaterials, such as polycationic polymers, and biomaterial-assisted delivery of non-antibiotic therapeutics, such as bacteriophages, antimicrobial peptides and antimicrobial enzymes, have improved our ability to treat antibiotic-resistant and recurring infections. Biomaterials not only allow targeted delivery of multiple agents but also sustained release at the infection site, thereby reducing potential systemic adverse effects. In this Review, we discuss biomaterial-based non-antibiotic antibacterial therapies for the treatment of community-acquired and hospital-acquired infectious diseases, with a focus on in vivo results. We highlight the translational potential of different biomaterial-based strategies and provide a perspective on the challenges associated with their clinical translation. Finally, we discuss the future scope of biomaterial-assisted antibacterial therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biomaterial-based antibacterial therapies.
Fig. 2: Proposed mechanism of action of different non-antibiotic antibacterial agents.
Fig. 3: Nanoparticle-based and microparticle-based antibacterial therapies.
Fig. 4: Hydrogel-based antibacterial therapies.

Similar content being viewed by others

References

  1. Liu, J., Gefen, O., Ronin, I., Bar-Meir, M. & Balaban, N. Q. Effect of tolerance on the evolution of antibiotic resistance under drug combinations. Science 367, 200–204 (2020).

    CAS  Google Scholar 

  2. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322 (1999).

    CAS  Google Scholar 

  3. Koo, H., Allan, R. N., Howlin, R. P., Stoodley, P. & Hall-Stoodley, L. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat. Rev. Microbiol. 15, 740–755 (2017).

    CAS  Google Scholar 

  4. Pumart, P. et al. Health and economic impacts of antimicrobial resistance in Thailand. J. Health Serv. Res. Policy 6, 352–360 (2012).

    Google Scholar 

  5. Sprenger, M. & Fukuda, K. New mechanisms, new worries. Science 351, 1263–1264 (2016).

    CAS  Google Scholar 

  6. Edelstein, M. V. et al. Spread of extensively resistant VIM-2-positive ST235 Pseudomonas aeruginosa in Belarus, Kazakhstan, and Russia: a longitudinal epidemiological and clinical study. Lancet Infect. Dis. 13, 867–876 (2013).

    Google Scholar 

  7. Weiner-Lastinger, L. M. et al. Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network, 2015–2017. Infect. Control Hosp. Epidemiol. 41, 1–18 (2020).

    Google Scholar 

  8. Weiner-Lastinger, L. M. et al. Antimicrobial-resistant pathogens associated with pediatric healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network, 2015–2017. Infect. Control Hosp. Epidemiol. 41, 19–30 (2020).

    Google Scholar 

  9. Weiner, L. M. et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect. Control Hosp. Epidemiol. 37, 1288–1301 (2016).

    Google Scholar 

  10. Levin-Reisman, I. et al. Antibiotic tolerance facilitates the evolution of resistance. Science 355, 826–830 (2017).

    CAS  Google Scholar 

  11. Langdon, A., Crook, N. & Dantas, G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 8, 39 (2016).

    Google Scholar 

  12. van Santen, K. L. et al. The standardized antimicrobial administration ratio: a new metric for measuring and comparing antibiotic use. Clin. Infect. Dis. 67, 179–185 (2018).

    Google Scholar 

  13. Dedrick, R. M. et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat. Med. 25, 730–733 (2019).

    CAS  Google Scholar 

  14. Schuch, R., Nelson, D. & Fischetti, V. A. A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418, 884–889 (2002).

    CAS  Google Scholar 

  15. Loeffler, J. M. & Fischetti, V. A. Synergistic lethal effect of a combination of phage lytic enzymes with different activities on penicillin-sensitive and -resistant Streptococcus pneumoniae strains. Antimicrob. Agents Chemother. 47, 375–377 (2003).

    CAS  Google Scholar 

  16. Chen, C. H. & Lu, T. K. Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics 9, 24 (2020).

    CAS  Google Scholar 

  17. Usmani, S. S. et al. THPdb: Database of FDA-approved peptide and protein therapeutics. PLoS ONE 12, e0181748 (2017).

    Google Scholar 

  18. Donlan, R. M. Preventing biofilms of clinically relevant organisms using bacteriophage. Trends Microbiol. 17, 66–72 (2009).

    CAS  Google Scholar 

  19. Labrie, S. J., Samson, J. E. & Moineau, S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8, 317–327 (2010).

    CAS  Google Scholar 

  20. Dufour, N., Delattre, R., Ricard, J. D. & Debarbieux, L. The lysis of pathogenic Escherichia coli by bacteriophages releases less endotoxin than by β-lactams. Clin. Infect. Dis. 64, 1582–1588 (2017).

    CAS  Google Scholar 

  21. Cho, I. & Blaser, M. J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13, 260–270 (2012).

    CAS  Google Scholar 

  22. Schooley, R. T. et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob. Agents Chemother. 61, e00954-17 (2017).

    Google Scholar 

  23. Jennes, S. et al. Use of bacteriophages in the treatment of colistin-only-sensitive Pseudomonas aeruginosa septicaemia in a patient with acute kidney injury — a case report. Crit. Care 21, 129 (2017).

    Google Scholar 

  24. Wroe, J. A., Johnson, C. T. & García, A. J. Bacteriophage delivering hydrogels reduce biofilm formation in vitro and infection in vivo. J. Biomed. Mater. Res. A 108, 39–49 (2020).

    CAS  Google Scholar 

  25. Meurice, E. et al. New antibacterial microporous CaP materials loaded with phages for prophylactic treatment in bone surgery. J. Mater. Sci. Mater. Med. 23, 2445–2452 (2012).

    CAS  Google Scholar 

  26. Barros, J. A. R. et al. Encapsulated bacteriophages in alginate-nanohydroxyapatite hydrogel as a novel delivery system to prevent orthopedic implant-associated infections. Nanomedicine 24, 102145 (2020).

    CAS  Google Scholar 

  27. Kaur, S., Harjai, K. & Chhibber, S. In vivo assessment of phage and linezolid based implant coatings for treatment of methicillin resistant S. aureus (MRSA) mediated orthopaedic device related infections. PLoS ONE 11, e0157626 (2016).

    Google Scholar 

  28. Carrigy, N. B. et al. Prophylaxis of Mycobacterium tuberculosis H37Rv infection in a preclinical mouse model via inhalation of nebulized bacteriophage D29. Antimicrob. Agents Chemother. 63, e00871-19 (2019).

    Google Scholar 

  29. Prazak, J. et al. Nebulized bacteriophages for prophylaxis of experimental ventilator-associated pneumonia due to methicillin-resistant Staphylococcus aureus. Crit. Care Med. 48, 1042–1046 (2020).

    CAS  Google Scholar 

  30. Golshahi, L., Lynch, K. H., Dennis, J. J. & Finlay, W. H. In vitro lung delivery of bacteriophages KS4-M and ΦKZ using dry powder inhalers for treatment of Burkholderia cepacia complex and Pseudomonas aeruginosa infections in cystic fibrosis. J. Appl. Microbiol. 110, 106–117 (2011).

    CAS  Google Scholar 

  31. Singla, S., Harjai, K., Katare, O. P. & Chhibber, S. Bacteriophage-loaded nanostructured lipid carrier: improved pharmacokinetics mediates effective resolution of Klebsiella pneumoniae-induced lobar pneumonia. J. Infect. Dis. 212, 325–334 (2015).

    CAS  Google Scholar 

  32. Agarwal, R. et al. Inhaled bacteriophage-loaded polymeric microparticles ameliorate acute lung infections. Nat. Biomed. Eng. 2, 841–849 (2018). Polymeric microparticles facilitate delivery of bacteriophages to mitigate bacterial lung infections in wild-type and cystic fibrosis transgenic mice.

    CAS  Google Scholar 

  33. Vinner, G. K., Richards, K., Leppanen, M., Sagona, A. P. & Malik, D. J. Microencapsulation of enteric bacteriophages in a pH-responsive solid oral dosage formulation using a scalable membrane emulsification process. Pharmaceutics 11, 475 (2019).

    CAS  Google Scholar 

  34. Vinner, G. K., Vladisavljević, G. T., Clokie, M. R. J. & Malik, D. J. Microencapsulation of Clostridium difficile specific bacteriophages using microfluidic glass capillary devices for colon delivery using pH triggered release. PLoS ONE 12, e0186239 (2017).

    Google Scholar 

  35. Thakral, S., Thakral, N. K. & Majumdar, D. K. Eudragit®: a technology evaluation. Expert Opin. Drug Deliv. 10, 131–149 (2013).

    CAS  Google Scholar 

  36. Ma, Y. P. et al. Enhanced alginate microspheres as means of oral delivery of bacteriophage for reducing Staphylococcus aureus intestinal carriage. Food Hydrocoll. 26, 434–440 (2012).

    CAS  Google Scholar 

  37. Colom, J. et al. Microencapsulation with alginate/CaCO3: A strategy for improved phage therapy. Sci. Rep. 7, 41441 (2017).

    CAS  Google Scholar 

  38. Adamu Ahmad, K., Sabo Mohammed, A. & Abas, F. Chitosan nanoparticles as carriers for the delivery of ΦKAZ14 bacteriophage for oral biological control of colibacillosis in chickens. Molecules 21, 256 (2016).

    Google Scholar 

  39. Rastogi, V., Yadav, P., Verma, A. & Pandit, J. K. Ex vivo and in vivo evaluation of microemulsion based transdermal delivery of E. coli specific T4 bacteriophage: A rationale approach to treat bacterial infection. Eur. J. Pharm. Sci. 107, 168–182 (2017).

    CAS  Google Scholar 

  40. Jain, S., Chaudhari, B. H. & Swarnakar, N. K. Preparation and characterization of niosomal gel for iontophoresis mediated transdermal delivery of isosorbide dinitrate. Drug Deliv. Transl Res. 1, 309–321 (2011).

    CAS  Google Scholar 

  41. Sarhan, W. A. & Azzazy, H. M. Apitherapeutics and phage-loaded nanofibers as wound dressings with enhanced wound healing and antibacterial activity. Nanomedicine 12, 2055–2067 (2017).

    CAS  Google Scholar 

  42. Cheng, W. et al. Incorporation of bacteriophages in polycaprolactone/collagen fibers for antibacterial hemostatic dual-function. J. Biomed. Mater. Res. Part B 106, 2588–2595 (2018).

    CAS  Google Scholar 

  43. Chhibber, S., Kaur, J. & Kaur, S. Liposome entrapment of bacteriophages improves wound healing in a diabetic mouse MRSA infection. Front. Microbiol. 9, 561 (2018).

    Google Scholar 

  44. Chadha, P., Katare, O. P. & Chhibber, S. Liposome loaded phage cocktail: Enhanced therapeutic potential in resolving Klebsiella pneumoniae mediated burn wound infections. Burns 43, 1532–1543 (2017).

    Google Scholar 

  45. Rubalskii, E. et al. Fibrin glue as a local drug-delivery system for bacteriophage PA5. Sci. Rep. 9, 2091 (2019).

    Google Scholar 

  46. Centers for Disease Control and Prevention. Catheter-associated urinary tract infections (CAUTI). CDC https://www.cdc.gov/hai/ca_uti/uti.html (2015).

  47. Lehman, S. M. & Donlan, R. M. Bacteriophage-mediated control of a two-species biofilm formed by microorganisms causing catheter-associated urinary tract infections in an in vitro urinary catheter model. Antimicrob. Agents Chemother. 59, 1127–1137 (2015).

    Google Scholar 

  48. Liao, K. S., Lehman, S. M., Tweardy, D. J., Donlan, R. M. & Trautner, B. W. Bacteriophages are synergistic with bacterial interference for the prevention of Pseudomonas aeruginosa biofilm formation on urinary catheters. J. Appl. Microbiol. 113, 1530–1539 (2012).

    CAS  Google Scholar 

  49. Milo, S. et al. Prevention of encrustation and blockage of urinary catheters by Proteus mirabilis via pH-triggered release of bacteriophage. J. Mater. Chem. B 5, 5403–5411 (2017).

    CAS  Google Scholar 

  50. Lungren, M. P. et al. Bacteriophage K antimicrobial-lock technique for treatment of Staphylococcus aureus central venous catheter-related infection: a leporine model efficacy analysis. J. Vasc. Interv. Radiol. 25, 1627–1632 (2014).

    Google Scholar 

  51. Curtin, J. J. & Donlan, R. M. Using bacteriophages to reduce formation of catheter-associated biofilms by Staphylococcus epidermidis. Antimicrob. Agents Chemother. 50, 1268–1275 (2006).

    CAS  Google Scholar 

  52. Fu, W. et al. Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob. Agents Chemother. 54, 397–404 (2010).

    CAS  Google Scholar 

  53. Mookherjee, N., Anderson, M. A., Haagsman, H. P. & Davidson, D. J. Antimicrobial host defence peptides: functions and clinical potential. Nat. Rev. Drug Discov. 19, 311–332 (2020).

    CAS  Google Scholar 

  54. Di, Y. P. et al. Enhanced therapeutic index of an antimicrobial peptide in mice by increasing safety and activity against multidrug-resistant bacteria. Sci. Adv. 6, eaay6817 (2020).

    CAS  Google Scholar 

  55. Lazzaro, B. P., Zasloff, M. & Rolff, J. Antimicrobial peptides: Application informed by evolution. Science 368, eaau5480 (2020).

    CAS  Google Scholar 

  56. Gordon, Y. J., Romanowski, E. G. & McDermott, A. M. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr. Eye Res. 30, 505–515 (2005).

    CAS  Google Scholar 

  57. Bacalum, M. & Radu, M. Cationic antimicrobial peptides cytotoxicity on mammalian cells: an analysis using therapeutic index integrative concept. Int. J. Pept. Res. Ther. 21, 47–55 (2015).

    CAS  Google Scholar 

  58. Rai, A. et al. One-step synthesis of high-density peptide-conjugated gold nanoparticles with antimicrobial efficacy in a systemic infection model. Biomaterials 85, 99–110 (2016).

    CAS  Google Scholar 

  59. Qi, G. B., Zhang, D., Liu, F. H., Qiao, Z. Y. & Wang, H. An “on-site transformation” strategy for treatment of bacterial infection. Adv. Mater. 29, 1703461 (2017).

    Google Scholar 

  60. Kwon, E. J. et al. Porous silicon nanoparticle delivery of tandem peptide anti-infectives for the treatment of Pseudomonas aeruginosa lung infections. Adv. Mater. 29, 1701527 (2017).

    Google Scholar 

  61. Lim, K. et al. Anhydrous polymer-based coating with sustainable controlled release functionality for facile, efficacious impregnation, and delivery of antimicrobial peptides. Biotechnol. Bioeng. 115, 2000–2012 (2018).

    CAS  Google Scholar 

  62. Qi, F. et al. Practical preparation of infection-resistant biomedical surfaces from antimicrobial β-peptide polymers. ACS Appl. Mater. Interfaces 11, 18907–18913 (2019).

    CAS  Google Scholar 

  63. Zhuk, I. et al. Self-defensive layer-by-layer films with bacteria-triggered antibiotic release. ACS Nano 8, 7733–7745 (2014).

    CAS  Google Scholar 

  64. Zhang, X.-Y. et al. Antimicrobial peptide-conjugated hierarchical antifouling polymer brushes for functionalized catheter surfaces. Biomacromolecules 20, 4171–4179 (2019).

    CAS  Google Scholar 

  65. Yu, K. et al. Anti-adhesive antimicrobial peptide coating prevents catheter associated infection in a mouse urinary infection model. Biomaterials 116, 69–81 (2017).

    CAS  Google Scholar 

  66. Gao, Q. et al. Rationally designed dual functional block copolymers for bottlebrush-like coatings: In vitro and in vivo antimicrobial, antibiofilm, and antifouling properties. Acta Biomater. 51, 112–124 (2017).

    CAS  Google Scholar 

  67. Chen, R., Willcox, M. D., Ho, K. K., Smyth, D. & Kumar, N. Antimicrobial peptide melimine coating for titanium and its in vivo antibacterial activity in rodent subcutaneous infection models. Biomaterials 85, 142–151 (2016).

    CAS  Google Scholar 

  68. Shen, X. et al. Antibacterial and osteogenesis performances of LL37-loaded titania nanopores in vitro and in vivo. Int. J. Nanomed. 14, 3043–3054 (2019).

    CAS  Google Scholar 

  69. Song, Y.-Y., Schmidt-Stein, F., Bauer, S. & Schmuki, P. Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system. J. Am. Chem. Soc. 131, 4230–4232 (2009).

    CAS  Google Scholar 

  70. Kazemzadeh-Narbat, M. et al. Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections. Biomaterials 34, 5969–5977 (2013).

    CAS  Google Scholar 

  71. Shi, J. et al. Biological and immunotoxicity evaluation of antimicrobial peptide-loaded coatings using a layer-by-layer process on titanium. Sci. Rep. 5, 16336 (2015).

    CAS  Google Scholar 

  72. Kazemzadeh-Narbat, M. et al. Drug release and bone growth studies of antimicrobial peptide-loaded calcium phosphate coating on titanium. J. Biomed. Mater. Res. Part B 100, 1344–1352 (2012).

    Google Scholar 

  73. Yang, G. et al. Sustained release of antimicrobial peptide from self-assembling hydrogel enhanced osteogenesis. J. Biomater. Sci. Polym. Ed. 29, 1812–1824 (2018).

    CAS  Google Scholar 

  74. Yuan, X. et al. Multifunctional sulfonated polyetheretherketone coating with beta-defensin-14 for yielding durable and broad-spectrum antibacterial activity and osseointegration. Acta Biomater. 86, 323–337 (2019).

    CAS  Google Scholar 

  75. Cormier, A. R., Pang, X., Zimmerman, M. I., Zhou, H.-X. & Paravastu, A. K. Molecular structure of RADA16-I designer self-assembling peptide nanofibers. ACS Nano 7, 7562–7572 (2013).

    CAS  Google Scholar 

  76. Briuglia, M. L., Urquhart, A. J. & Lamprou, D. A. Sustained and controlled release of lipophilic drugs from a self-assembling amphiphilic peptide hydrogel. Int. J. Pharm. 474, 103–111 (2014).

    CAS  Google Scholar 

  77. Irwansyah, I. et al. Gram-positive antimicrobial activity of amino acid-based hydrogels. Adv. Mater. 27, 648–654 (2015).

    CAS  Google Scholar 

  78. Lohmann, N. et al. Glycosaminoglycan-based hydrogels capture inflammatory chemokines and rescue defective wound healing in mice. Sci. Transl Med. 9, eaai9044 (2017).

    Google Scholar 

  79. Li, J., Liang, S., Yan, Y., Tian, X. & Li, X. O-mannosylation affords a glycopeptide hydrogel with inherent antibacterial activities against E. coli via multivalent interactions between lectins and supramolecular assemblies. Macromol. Biosci. 19, e1900124 (2019).

    Google Scholar 

  80. Xie, Z. et al. Design of antimicrobial peptides conjugated biodegradable citric acid derived hydrogels for wound healing. J. Biomed. Mater. Res. A 103, 3907–3918 (2015).

    CAS  Google Scholar 

  81. Liu, M. et al. Fabrication of KR-12 peptide-containing hyaluronic acid immobilized fibrous eggshell membrane effectively kills multi-drug-resistant bacteria, promotes angiogenesis and accelerates re-epithelialization. Int. J. Nanomed. 14, 3345–3360 (2019).

    CAS  Google Scholar 

  82. Obuobi, S. et al. Facile and efficient encapsulation of antimicrobial peptides via crosslinked DNA nanostructures and their application in wound therapy. J. Control. Rel. 313, 120–130 (2019).

    CAS  Google Scholar 

  83. Ch’ng, J.-H., Chong, K. K. L., Lam, L. N., Wong, J. J. & Kline, K. A. Biofilm-associated infection by enterococci. Nat. Rev. Microbiol. 17, 82–94 (2019).

    Google Scholar 

  84. Wolcott, R. D., Rhoads, D. D. & Dowd, S. E. Biofilms and chronic wound inflammation. J. Wound Care 17, 333–341 (2008).

    CAS  Google Scholar 

  85. Maiden, M. M., Zachos, M. P. & Waters, C. M. Hydrogels embedded with melittin and tobramycin are effective against Pseudomonas aeruginosa biofilms in an animal wound model. Front. Microbiol. 10, 1348 (2019).

    Google Scholar 

  86. Wang, J. et al. pH-Switchable antimicrobial nanofiber networks of hydrogel eradicate biofilm and rescue stalled healing in chronic wounds. ACS Nano 13, 11686–11697 (2019). A pH-responsive hydrogel that displays antimicrobial activity at an acidic pH, which is characteristic for the pathological environment of infected chronic wounds, erradicates biofilms and facilitates wound healing.

    CAS  Google Scholar 

  87. Puthia, M. et al. A dual-action peptide-containing hydrogel targets wound infection and inflammation. Sci. Transl Med. 12, eaax6601 (2020). A TCP-25-loaded hydrogel reduces bacterial counts and inflammation in murine subcutaneous wound and porcine partial thickness wound models, and improves wound healing.

    CAS  Google Scholar 

  88. Dutta, D., Ozkan, J. & Willcox, M. D. P. Biocompatibility of antimicrobial melimine lenses: rabbit and human studies. Optom. Vis. Sci. 91, 570–581 (2014).

    Google Scholar 

  89. Cole, N. et al. In vivo performance of melimine as an antimicrobial coating for contact lenses in models of CLARE and CLPU. Invest. Ophthalmol. Vis. Sci. 51, 390–395 (2010).

    Google Scholar 

  90. Dutta, D., Vijay, A. K., Kumar, N. & Willcox, M. D. Melimine-coated antimicrobial contact lenses reduce microbial keratitis in an animal model. Invest. Ophthalmol. Vis. Sci. 57, 5616–5624 (2016).

    CAS  Google Scholar 

  91. Dutta, D. et al. Development of silicone hydrogel antimicrobial contact lenses with Mel4 peptide coating. Optom. Vis. Sci. 95, 937–946 (2018).

    Google Scholar 

  92. Gonzalez-Delgado, L. S. et al. Two-site recognition of Staphylococcus aureus peptidoglycan by lysostaphin SH3b. Nat. Chem. Biol. 16, 24–30 (2020).

    CAS  Google Scholar 

  93. Cui, F. et al. Development of chitosan-collagen hydrogel incorporated with lysostaphin (CCHL) burn dressing with anti-methicillin-resistant Staphylococcus aureus and promotion wound healing properties. Drug Deliv. 18, 173–180 (2011).

    CAS  Google Scholar 

  94. Windolf, C. D., Lögters, T., Scholz, M., Windolf, J. & Flohé, S. Lysostaphin-coated titan-implants preventing localized osteitis by Staphylococcus aureus in a mouse model. PLoS ONE 9, e115940 (2014).

    Google Scholar 

  95. Xue, B. et al. A novel controlled-release system for antibacterial enzyme lysostaphin delivery using hydroxyapatite/chitosan composite bone cement. PLoS ONE 9, e113797 (2014).

    Google Scholar 

  96. Nithya, S. et al. Preparation, characterization and efficacy of lysostaphin-chitosan gel against Staphylococcus aureus. Int. J. Biol. Macromol. 110, 157–166 (2018).

    CAS  Google Scholar 

  97. Abulateefeh, S. R. et al. Facile synthesis of responsive nanoparticles with reversible, tunable and rapid thermal transitions from biocompatible constituents. Chem. Commun. https://doi.org/10.1039/B911986H (2009).

    Article  Google Scholar 

  98. Guo, S. et al. Engineered living materials based on adhesin-mediated trapping of programmable cells. ACS Synth. Biol. 9, 475–485 (2020).

    CAS  Google Scholar 

  99. Johnson, C. T. et al. Hydrogel delivery of lysostaphin eliminates orthopedic implant infection by Staphylococcus aureus and supports fracture healing. Proc. Natl Acad. Sci. USA 115, E4960–E4969 (2018). Hydrogel-based lysostaphin delivery completely clears orthopaedic implant infection caused by S. aureus, outperforming standard-of-care antibiotic therapy, and restores complete fracture healing in mice.

    CAS  Google Scholar 

  100. Johnson, C. T. et al. Lysostaphin and BMP-2 co-delivery reduces S. aureus infection and regenerates critical-sized segmental bone defects. Sci. Adv. 5, eaaw1228 (2019). Hydrogel-enabled co-delivery of lysostaphin and bone morphogenetic protein 2 eliminates S. aureus infection, promotes bone regeneration to bridge a segmental bone defect and restores the environment at the site of infection to a healthy (non-infected) microenvironment in mice.

    CAS  Google Scholar 

  101. Nelson, D., Loomis, L. & Fischetti, V. A. Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc. Natl Acad. Sci. USA 98, 4107–4112 (2001).

    CAS  Google Scholar 

  102. Portilla, S., Fernández, L., Gutiérrez, D., Rodríguez, A. & García, P. Encapsulation of the antistaphylococcal endolysin LysRODI in pH-sensitive liposomes. Antibiotics 9, 242 (2020).

    CAS  Google Scholar 

  103. Gondil, V. S. et al. Comprehensive evaluation of chitosan nanoparticle based phage lysin delivery system; a novel approach to counter S. pneumoniae infections. Int. J. Pharm. 573, 118850 (2020).

    CAS  Google Scholar 

  104. Liu, S.-y et al. Antimicrobial activity of a quaternary ammonium methacryloxy silicate-containing acrylic resin: a randomised clinical trial. Sci. Rep. 6, 21882 (2016).

    CAS  Google Scholar 

  105. Atar-Froyman, L. et al. Anti-biofilm properties of wound dressing incorporating nonrelease polycationic antimicrobials. Biomaterials 46, 141–148 (2015).

    CAS  Google Scholar 

  106. Hoque, J., Akkapeddi, P., Ghosh, C., Uppu, D. S. S. M. & Haldar, J. A biodegradable polycationic paint that kills bacteria in vitro and in vivo. ACS Appl. Mater. Interfaces 8, 29298–29309 (2016).

    CAS  Google Scholar 

  107. Liu, L. et al. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat. Nanotechnol. 4, 457–463 (2009).

    CAS  Google Scholar 

  108. Chen, Y. et al. Design and synthesis of biocompatible, hemocompatible, and highly selective antimicrobial cationic peptidopolysaccharides via click chemistry. Biomacromolecules 20, 2230–2240 (2019).

    CAS  Google Scholar 

  109. Andrén, O. C. J. et al. Antibiotic-free cationic dendritic hydrogels as surgical-site-infection-inhibiting coatings. Adv. Healthc. Mater. 8, e1801619 (2019).

    Google Scholar 

  110. Venkatesh, M. et al. Antimicrobial activity and cell selectivity of synthetic and biosynthetic cationic polymers. Antimicrob. Agents Chemother. 61, e00469-17 (2017).

    Google Scholar 

  111. Nederberg, F. et al. Biodegradable nanostructures with selective lysis of microbial membranes. Nat. Chem. 3, 409–414 (2011).

    CAS  Google Scholar 

  112. Li, J. et al. Block copolymer nanoparticles remove biofilms of drug-resistant gram-positive bacteria by nanoscale bacterial debridement. Nano Lett. 18, 4180–4187 (2018). Nanoparticles facilitate biofilm removal through a process of nanoscale debridement, which is orthogonal to conventional development of resistance trait in bacteria and would have widespread application in treating resistant as well as sensitive strains of bacteria.

    CAS  Google Scholar 

  113. Rahman, M. A. et al. Macromolecular-clustered facial amphiphilic antimicrobials. Nat. Commun. 9, 5231 (2018).

    CAS  Google Scholar 

  114. Lienkamp, K. et al. Antimicrobial polymers prepared by ROMP with unprecedented selectivity: a molecular construction kit approach. J. Am. Chem. Soc. 130, 9836–9843 (2008).

    CAS  Google Scholar 

  115. Ilker, M. F., Nüsslein, K., Tew, G. N. & Coughlin, E. B. Tuning the hemolytic and antibacterial activities of amphiphilic polynorbornene derivatives. J. Am. Chem. Soc. 126, 15870–15875 (2004).

    CAS  Google Scholar 

  116. Engler, A. C. et al. Antimicrobial polycarbonates: investigating the impact of balancing charge and hydrophobicity using a same-centered polymer approach. Biomacromolecules 14, 4331–4339 (2013).

    CAS  Google Scholar 

  117. Chin, W. et al. A macromolecular approach to eradicate multidrug resistant bacterial infections while mitigating drug resistance onset. Nat. Commun. 9, 917 (2018).

    Google Scholar 

  118. Lam, S. J. et al. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nat. Microbiol. 1, 16162 (2016). Structurally nanoengineered AMP polymers display potent activity against a variety of Gram-negative bacteria, including colistin-resistant and multidrug-resistant pathogens, with low cytotoxicity and minimal development of resistance.

    CAS  Google Scholar 

  119. Wang, Y., Yang, Y., Shi, Y., Song, H. & Yu, C. Antibiotic-free antibacterial strategies enabled by nanomaterials: progress and perspectives. Adv. Mater. 32, 1904106 (2020).

    CAS  Google Scholar 

  120. Kirk, J. A. et al. New class of precision antimicrobials redefines role of Clostridium difficile S-layer in virulence and viability. Sci. Transl Med. 9, eaah6813 (2017).

    Google Scholar 

  121. Arifuzzaman, M. et al. MRGPR-mediated activation of local mast cells clears cutaneous bacterial infection and protects against reinfection. Sci. Adv. 5, eaav0216 (2019).

    Google Scholar 

  122. Ram, G., Ross, H. F., Novick, R. P., Rodriguez-Pagan, I. & Jiang, D. Conversion of staphylococcal pathogenicity islands to CRISPR-carrying antibacterial agents that cure infections in mice. Nat. Biotechnol. 36, 971–976 (2018).

    CAS  Google Scholar 

  123. Hwang, G. et al. Catalytic antimicrobial robots for biofilm eradication. Sci. Robot. 4, eaaw2388 (2019). Magnetically driven, catalytic antimicrobial robots efficiently and controllably kill, degrade and remove biofilms, and can be developed to fight persistent biofilm infections or mitigate biofouling of medical devices and diverse surfaces.

    Google Scholar 

  124. Qiao, Y. et al. Treatment of MRSA-infected osteomyelitis using bacterial capturing, magnetically targeted composites with microwave-assisted bacterial killing. Nat. Commun. 11, 4446 (2020).

    CAS  Google Scholar 

  125. Si, Y. et al. Daylight-driven rechargeable antibacterial and antiviral nanofibrous membranes for bioprotective applications. Sci. Adv. 4, eaar5931 (2018).

    Google Scholar 

  126. Berry, G. C., Bockstaller, M. R. & Matyjaszewski, K. Celebrating 100 years of polymer science. Prog. Polym. Sci. 100, 101193 (2020).

    CAS  Google Scholar 

  127. Zhang, L. et al. Self-assembled lipid–polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano 2, 1696–1702 (2008).

    CAS  Google Scholar 

  128. Brady, R. A., Mocca, C. P., Plaut, R. D., Takeda, K. & Burns, D. L. Comparison of the immune response during acute and chronic Staphylococcus aureus infection. PLoS ONE 13, e0195342 (2018).

    Google Scholar 

  129. Hampton, H. G., Watson, B. N. J. & Fineran, P. C. The arms race between bacteria and their phage foes. Nature 577, 327–336 (2020).

    CAS  Google Scholar 

  130. Fothergill, J. L., Neill, D. R., Loman, N., Winstanley, C. & Kadioglu, A. Pseudomonas aeruginosa adaptation in the nasopharyngeal reservoir leads to migration and persistence in the lungs. Nat. Commun. 5, 4780 (2014).

    CAS  Google Scholar 

  131. Fux, C. A., Shirtliff, M., Stoodley, P. & Costerton, J. W. Can laboratory reference strains mirror “real-world” pathogenesis? Trends Microbiol. 13, 58–63 (2005).

    CAS  Google Scholar 

  132. Palmer, K. L., Aye, L. M. & Whiteley, M. Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J. Bacteriol. 189, 8079–8087 (2007).

    CAS  Google Scholar 

  133. Turner, K. H., Wessel, A. K., Palmer, G. C., Murray, J. L. & Whiteley, M. Essential genome of Pseudomonas aeruginosa in cystic fibrosis sputum. Proc. Natl Acad. Sci. USA 112, 4110–4115 (2015).

    CAS  Google Scholar 

  134. Quickel, K. E. Jr, Selden, R., Caldwell, J. R., Nora, N. F. & Schaffner, W. Efficacy and safety of topical lysostaphin treatment of persistent nasal carriage of Staphylococcus aureus. Appl. Microbiol. 22, 446–450 (1971).

    Google Scholar 

  135. Walsh, S., Shah, A. & Mond, J. Improved pharmacokinetics and reduced antibody reactivity of lysostaphin conjugated to polyethylene glycol. Antimicrob. Agents Chemother. 47, 554–558 (2003).

    CAS  Google Scholar 

  136. Kaur, T. et al. Immunocompatibility of bacteriophages as nanomedicines. J. Nanotechnol. 2012, 247427 (2012).

    Google Scholar 

  137. Blazanovic, K. et al. Structure-based redesign of lysostaphin yields potent antistaphylococcal enzymes that evade immune cell surveillance. Mol. Ther. Methods Clin. Dev. 2, 15021 (2015).

    Google Scholar 

  138. Zhao, H. et al. Depletion of T cell epitopes in lysostaphin mitigates anti-drug antibody response and enhances antibacterial efficacy in vivo. Chem. Biol. 22, 629–639 (2015).

    CAS  Google Scholar 

  139. Alcantar, N. A., Aydil, E. S. & Israelachvili, J. N. Polyethylene glycol–coated biocompatible surfaces. J. Biomed. Mater. Res. 51, 343–351 (2000).

    CAS  Google Scholar 

  140. Zhang, P., Sun, F., Liu, S. & Jiang, S. Anti-PEG antibodies in the clinic: Current issues and beyond PEGylation. J. Control. Rel. 244, 184–193 (2016).

    CAS  Google Scholar 

  141. Saifer, M. G. P., Williams, L. D., Sobczyk, M. A., Michaels, S. J. & Sherman, M. R. Selectivity of binding of PEGs and PEG-like oligomers to anti-PEG antibodies induced by methoxyPEG-proteins. Mol. Immunol. 57, 236–246 (2014).

    CAS  Google Scholar 

  142. Qi, Y. et al. A brush-polymer/exendin-4 conjugate reduces blood glucose levels for up to five days and eliminates poly(ethylene glycol) antigenicity. Nat. Biomed. Eng. 1, 0002 (2016).

    Google Scholar 

  143. Mancuso, F., Shi, J. & Malik, D. J. High throughput manufacturing of bacteriophages using continuous stirred tank bioreactors connected in series to ensure optimum host bacteria physiology for phage production. Viruses 10, 537 (2018).

    Google Scholar 

  144. Wibowo, D. & Zhao, C.-X. Recent achievements and perspectives for large-scale recombinant production of antimicrobial peptides. Appl. Microbiol. Biotechnol. 103, 659–671 (2019).

    CAS  Google Scholar 

  145. Nour El-Din, H. T. et al. A rapid lysostaphin production approach and a convenient novel lysostaphin loaded nano-emulgel; as a sustainable low-cost methicillin-resistant Staphylococcus aureus combating platform. Biomolecules 10, 435 (2020).

    Google Scholar 

  146. Szweda, P., Gorczyca, G., Filipkowski, P., Zalewska, M. & Milewski, S. Efficient production of Staphylococcus simulans lysostaphin in a benchtop bioreactor by recombinant Escherichia coli. Prep. Biochem. Biotechnol. 44, 370–381 (2014).

    CAS  Google Scholar 

  147. Mierau, I. et al. Industrial-scale production and purification of a heterologous protein in Lactococcus lactis using the nisin-controlled gene expression system NICE: The case of lysostaphin. Microb. Cell Fact. 4, 15 (2005).

    Google Scholar 

  148. Hu, C. et al. Industrialization of lipid nanoparticles: From laboratory-scale to large-scale production line. Eur. J. Pharm. Biopharm. 109, 206–213 (2016).

    CAS  Google Scholar 

  149. Fowler, V. G. Jr et al. Exebacase for patients with Staphylococcus aureus bloodstream infection and endocarditis. J. Clin. Invest. 130, 3750–3760 (2020).

    CAS  Google Scholar 

  150. Schuch, R., Nowinski, R. C., Wittekind, M., Lee, H. & Schneider, B. Bacteriophage lysin and antibiotic combinations against gram positive bacteria. US Patent 9889181 (2018).

  151. Stefan, M. New antimicrobial agents. European patent application EP2702070EP2702070 (2014).

  152. Czaplewski, L. et al. Alternatives to antibiotics — a pipeline portfolio review. Lancet Infect. Dis. 16, 239–251 (2016).

    CAS  Google Scholar 

  153. Ting, D. S. J., Beuerman, R. W., Dua, H. S., Lakshminarayanan, R. & Mohammed, I. Strategies in translating the therapeutic potentials of host defense peptides. Front. Immunol. 11, 983 (2020).

    CAS  Google Scholar 

  154. Abdelkader, K., Gerstmans, H., Saafan, A., Dishisha, T. & Briers, Y. The preclinical and clinical progress of bacteriophages and their lytic enzymes: the parts are easier than the whole. Viruses 11, 96 (2019).

    CAS  Google Scholar 

  155. Fridman, O., Goldberg, A., Ronin, I., Shoresh, N. & Balaban, N. Q. Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature 513, 418–421 (2014).

    CAS  Google Scholar 

  156. DiGiandomenico, A. et al. A multifunctional bispecific antibody protects against Pseudomonas aeruginosa. Sci. Transl Med. 6, 262ra155 (2014).

    Google Scholar 

  157. Secher, T. et al. The anti-Pseudomonas aeruginosa antibody Panobacumab is efficacious on acute pneumonia in neutropenic mice and has additive effects with meropenem. PLoS ONE 8, e73396 (2013).

    CAS  Google Scholar 

  158. Palmu, A. A. et al. Effect of pneumococcal Haemophilus influenzae protein D conjugate vaccine (PHiD-CV10) on outpatient antimicrobial purchases: a double-blind, cluster randomised phase 3–4 trial. Lancet Infect. Dis. 14, 205–212 (2014).

    CAS  Google Scholar 

  159. Nuccitelli, A. et al. Structure-based approach to rationally design a chimeric protein for an effective vaccine against Group B Streptococcus infections. Proc. Natl Acad. Sci. USA 108, 10278–10283 (2011).

    CAS  Google Scholar 

  160. Hancock, R. E., Nijnik, A. & Philpott, D. J. Modulating immunity as a therapy for bacterial infections. Nat. Rev. Microbiol. 10, 243–254 (2012).

    CAS  Google Scholar 

  161. Scott, M. G. et al. An anti-infective peptide that selectively modulates the innate immune response. Nat. Biotechnol. 25, 465–472 (2007).

    CAS  Google Scholar 

  162. de la Fuente-Núñez, C., Reffuveille, F., Haney, E. F., Straus, S. K. & Hancock, R. E. Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog. 10, e1004152 (2014).

    Google Scholar 

  163. Krausgruber, T. et al. Structural cells are key regulators of organ-specific immune responses. Nature 583, 296–302 (2020).

    CAS  Google Scholar 

  164. Todd, E. M., Ramani, R., Szasz, T. P. & Morley, S. C. Inhaled GM-CSF in neonatal mice provides durable protection against bacterial pneumonia. Sci. Adv. 5, eaax3387 (2019).

    CAS  Google Scholar 

  165. Zhang, Z., Nong, J. & Zhong, Y. Antibacterial, anti-inflammatory and neuroprotective layer-by-layer coatings for neural implants. J. Neural Eng. 12, 046015 (2015).

    Google Scholar 

  166. Bouras, M., Asehnoune, K. & Roquilly, A. Contribution of dendritic cell responses to sepsis-induced immunosuppression and to susceptibility to secondary pneumonia. Front. Immunol. 9, 2590 (2018).

    Google Scholar 

  167. Hotchkiss, R. S., Monneret, G. & Payen, D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat. Rev. Immunol. 13, 862–874 (2013).

    CAS  Google Scholar 

  168. Roquilly, A. et al. Alveolar macrophages are epigenetically altered after inflammation, leading to long-term lung immunoparalysis. Nat. Immunol. 21, 636–648 (2020).

    CAS  Google Scholar 

  169. Lee, J. H., Jeong, S. H., Cha, S.-S. & Lee, S. H. A lack of drugs for antibiotic-resistant Gram-negative bacteria. Nat. Rev. Drug Discov. 6, 938–938 (2007).

    Google Scholar 

  170. York, A. New drugs for the antibacterial pipeline? Nat. Rev. Microbiol. 18, 61–61 (2020).

    CAS  Google Scholar 

  171. Jault, P. et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect. Dis. 19, 35–45 (2019).

    Google Scholar 

  172. Leitner, L. et al. Bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomized, placebo-controlled, double-blind clinical trial. BMC Urol. 17, 90 (2017).

    Google Scholar 

  173. Leitner, L. et al. Intravesical bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomised, placebo-controlled, double-blind clinical trial. Lancet Infect. Dis. 21, 427–436 (2020).

    Google Scholar 

  174. Jun, S. Y. et al. Pharmacokinetics and tolerance of the phage endolysin-based candidate drug SAL200 after a single intravenous administration among healthy volunteers. Antimicrob. Agents Chemother. 61, e02629-16 (2017).

    Google Scholar 

  175. Raqib, R. et al. Improved outcome in shigellosis associated with butyrate induction of an endogenous peptide antibiotic. Proc. Natl Acad. Sci. USA 103, 9178–9183 (2006).

    CAS  Google Scholar 

  176. Raqib, R. et al. Efficacy of sodium butyrate adjunct therapy in shigellosis: a randomized, double-blind, placebo-controlled clinical trial. BMC Infect. Dis. 12, 111 (2012).

    CAS  Google Scholar 

  177. Rekha, R. S. et al. Immune responses in the treatment of drug-sensitive pulmonary tuberculosis with phenylbutyrate and vitamin D3 as host directed therapy. BMC Infect. Dis. 18, 303 (2018).

    Google Scholar 

  178. Melo Ld, V. P. et al. Development of a phage cocktail to control proteus mirabilis catheter-associated urinary tract infections. Front. Microbiol. 7, 1024 (2016).

    Google Scholar 

  179. Meyer, A., Greene, M., Kimmelshue, C. & Cademartiri, R. Stabilization of T4 bacteriophage at acidic and basic pH by adsorption on paper. Colloids Surf. B Biointerfaces 160, 169–176 (2017).

    CAS  Google Scholar 

  180. Fulgione, A. et al. Biomimetic hydroxyapatite nanocrystals are an active carrier for Salmonella bacteriophages. Int. J. Nanomed. 14, 2219–2232 (2019).

    CAS  Google Scholar 

  181. Kłodzińska, S. N. et al. Hyaluronic acid-based nanogels improve in vivo compatibility of the anti-biofilm peptide DJK-5. Nanomedicine 20, 102022 (2019).

    Google Scholar 

  182. Xue, Q. et al. Anti-infective biomaterials with surface-decorated tachyplesin I. Biomaterials 178, 351–362 (2018).

    CAS  Google Scholar 

  183. Moosazadeh Moghaddam, M. et al. Comparison of the antibacterial effects of a short cationic peptide and 1% silver bioactive glass against extensively drug-resistant bacteria, Pseudomonas aeruginosa and Acinetobacter baumannii, isolated from burn patients. Amino Acids 50, 1617–1628 (2018).

    CAS  Google Scholar 

  184. Chen, H. et al. Versatile antimicrobial peptide-based ZnO quantum dots for in vivo bacteria diagnosis and treatment with high specificity. Biomaterials 53, 532–544 (2015).

    CAS  Google Scholar 

  185. Zhang, Y. et al. Antibacterial and biocompatible cross-linked waterborne polyurethanes containing gemini quaternary ammonium salts. Biomacromolecules 19, 279–287 (2018).

    Google Scholar 

  186. Chen, Y. F. et al. Star-shaped polypeptides exhibit potent antibacterial activities. Nanoscale 11, 11696–11708 (2019).

    CAS  Google Scholar 

  187. Hesaraki, S., Karimi, M. & Nezafati, N. The synergistic effects of SrF2 nanoparticles, YSZ nanoparticles, and poly-ε-l-lysin on physicomechanical, ion release, and antibacterial-cellular behavior of the flowable dental composites. Mater. Sci. Eng. C 109, 110592 (2020).

    CAS  Google Scholar 

  188. Liu, Y. et al. Immunomimetic designer cells protect mice from MRSA infection. Cell 174, 259–270.e11 (2018).

    CAS  Google Scholar 

  189. Zhu, C. et al. A hydrogel-based localized release of colistin for antimicrobial treatment of burn wound infection. Macromol. Biosci. 17, 1600320 (2017).

    Google Scholar 

  190. Kuijpers, A. J. et al. In vitro and in vivo evaluation of gelatin-chondroitin sulphate hydrogels for controlled release of antibacterial proteins. Biomaterials 21, 1763–1772 (2000).

    CAS  Google Scholar 

  191. Vipra, A. A. et al. Antistaphylococcal activity of bacteriophage derived chimeric protein P128. BMC Microbiol. 12, 41 (2012).

    CAS  Google Scholar 

  192. Pangule, R. C. et al. Antistaphylococcal nanocomposite films based on enzyme-nanotube conjugates. ACS Nano 4, 3993–4000 (2010).

    CAS  Google Scholar 

  193. Flynn, J., Durack, E., Collins, M. N. & Hudson, S. P. Tuning the strength and swelling of an injectable polysaccharide hydrogel and the subsequent release of a broad spectrum bacteriocin, nisin A. J. Mater. Chem. B 8, 4029–4038 (2020).

    CAS  Google Scholar 

  194. Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42–51 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Cystic Fibrosis Foundation (CFF GARCIA17G0) and the National Institutes of Health (R01 AR062920).

Author information

Authors and Affiliations

Authors

Contributions

P.P.K. and A.J.G. conceived the idea of the Review, developed the outline, contributed to the literature search, writing, and creation of figures and tables. M.R. contributed to the literature search and writing of the section on bacteriophage-based biomaterials, as well as the creation of figures and tables. All authors contributed to the discussion, review and editing of the entire article content.

Corresponding author

Correspondence to Andrés J. García.

Ethics declarations

Competing interests

A.J.G. is an inventor in a patent application on the lysostaphin-delivering hydrogel filed by the Georgia Tech Research Corporation (no. 16/191,685, filed on 15 November 2018). The authors declare no other competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Therapeutic Proteins Database (THPdb): https://webs.iiitd.edu.in/raghava/thpdb/keyword.php

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalelkar, P.P., Riddick, M. & García, A.J. Biomaterial-based antimicrobial therapies for the treatment of bacterial infections. Nat Rev Mater 7, 39–54 (2022). https://doi.org/10.1038/s41578-021-00362-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-021-00362-4

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research