Skip to main content
Log in

Resonant Terahertz Generation by the Interaction of Laser Beams with Magnetized Anharmonic Carbon Nanotube Array

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this novel scheme, a theoretical analysis of resonant terahertz (THz) generation in the array of magnetized anharmonic carbon nanotubes (CNTs) is presented. Two laser beams with frequencies (\({\omega }_{1}, {\omega }_{2}\)) and wavenumbers (\({k}_{1}, {k}_{2}\)) propagate through the array of vertically aligned anharmonic CNTs in the presence of an applied static magnetic field. It provides different displacements to the various electrons of CNTs. Due to this, restoration force varies nonlinearly with the displacements of electrons and hence results in anharmonicity. This anharmonicity plays a significant role in the enhancement of absorption of laser beams by the electrons of CNTs. The nonlinear restoration force produces the current which is responsible for the THz generation. It is observed that the applied magnetic field \((170\mathrm{ to }235\mathrm{ kG})\) helps in the enhancement of the THz generation by increasing the nonlinearity of the system. The impact of dimensions, inter-tube separation, and density of CNTs on the THz amplitude has also been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that supports the findings of this study are available inside the paper.

References

  1. Baker C, Lo T, Tribe WR, Cole BE, Hogbin MR, Kemp MC (2007) Proc. IEEE 95:1559

  2. Orlando AR, Gallerano GP (2009) J Infrared Millim Terahertz Waves 30:1308

  3. Siegel PH (2002) IEEE Trans Microwave Theory Tech 50:910

  4. Dragoman D, Dragomen M (2004) Prog Quantum Electron 28:1

  5. Ishigaki K, Shiraishi M, Suzuki S, Asada M (2012) Nishiyama N and Arai S Electronics letters 48:582

    Article  Google Scholar 

  6. Mehta A, Rajput J, Kang K, Kant N (2020) Laser Phys 30:045402

  7. Kumar S, Vij S, Kant N (2021) Mehta A and Thakur V EPJ Plus 136:148

    CAS  Google Scholar 

  8. Sharma S, Vijay A (2018) Phys Plasmas 25:023114

  9. Sharma S, Vijay A (2019) Optik 199:163381

  10. Vij S,  Kant N and Thakur V (2019) Plasmonics 14:1051

    Article  CAS  Google Scholar 

  11. Jain S, Parashar J, Kurchania R (2013) Int Nano Lett 3:5326

  12. Mehta A, Kant N (2019) Proc SPIE 10917-109170R

  13. Zhang Q, Haroz E H, Jin Z, Ren L, Wang X, Arvidson RS, Luttge A, Kono J (2013) Nano Lett 13:5991

  14. Giannini V, Vecchi G, Rivas JG (2010) Phys Rev Lett 105:266801

  15. Titova LV, Pint CL, Zhang Q, Hauge RH (2015) Kono J and Hegmann F A Nano Lett 15:3267

    Article  CAS  Google Scholar 

  16. Batrakov KG, Kibis OV, Kuzhir P, Da Costa MR, Portnoi ME (2010) J Nanophotonics 4:041665

  17. Portnoi ME, Kibis OV, Da Costa MR (2008) Superlattices Microstruct 43:399–407

    Article  CAS  Google Scholar 

  18. Wang Y, Wu Q (2008) Chin Opt Lett 8:770

  19. Dragoman D, Dragoman M (2004) Physics E 24:282

  20. Dagher M, Chamanara N, Sounas D, Martel R, Caloz C (2012) IEEE Trans. Nanotech 11:463

  21. Reich S, Thomson C, Maultzsch J (2004) Carbon nanotubes: Basic concepts and physical properties. Wiley VCH

  22. Lu W, Wang D (2007) Chen L. Nano Lett 7:2729

    Article  CAS  Google Scholar 

  23. Liu S, Tripathi VK (2004) Phys Rev B 70:115414

  24. Kumar M, Tripathi VK (2013) Phys Plasmas 20:023302

  25. Dai H (2002) Surf Sci 500:218

  26. Muñoz E, Maser WK, Benito AM, Martínez MT, de la Fuente GF, Righi A, Sauvajol JL, Anglaret E, Maniette Y (2000) Appl Phys A 70:145

  27. Watanabe S, Minami N, Shimano R (2011) Opt Express 19:1528

  28. Kumar A, Kumar P (2016) Phys Plasmas 23:103302

Download references

Author information

Authors and Affiliations

Authors

Contributions

Sandeep Kumar: derivation, methodology, and analytical modeling; Shivani Vij: graph plotting, writing (original draft preparation); Niti Kant: numerical analysis and result discussion; Vishal Thakur: supervision, reviewing, and editing.

Corresponding author

Correspondence to Vishal Thakur.

Ethics declarations

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Vij, S., Kant, N. et al. Resonant Terahertz Generation by the Interaction of Laser Beams with Magnetized Anharmonic Carbon Nanotube Array. Plasmonics 17, 381–388 (2022). https://doi.org/10.1007/s11468-021-01529-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01529-z

Keywords

Navigation