Skip to main content
Log in

BF3-catalyzed oxa-Diels–Alder reaction of ethyl vinyl sulfide and β-methyl-α-phenylacrolein: a molecular electron density theory study

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Uncatalyzed and BF3-catalyzed oxa-Diels–Alder reaction of ethyl vinyl sulfide (EVS) and β-methyl-α-phenylacrolein (ACR) experimentally explored by Ishihara and coworkers is investigated by employing molecular electron density theory. Based on their report, the titled reaction resulted in the formation of two cis and trans cycloadducts with a ratio of 86:14. Conceptual density functional theory analysis indicated that EVS and ACR should act as nucleophile and electrophile, respectively. Coordination of the BF3 LA increases significantly the electrophilicity power of ACR. Regioselectivity in the studied reaction was investigated by calculation of the Parr functions, and a good agreement was observed between both theoretical and experimental results. Furthermore, the diastereoselectivity of both catalyzed and uncatalyzed reactions was studied by using potential energy surface analysis, and a satisfactory agreement was observed with the experimental outcomes. Reduction of the activation barriers for the catalyzed reaction, relative to the uncatalyzed one, rationalized why the reaction should be performed experimentally at a very low temperature (−40 °C). Mechanistic studies indicated that in contrast to the uncatalyzed reaction, the catalyzed reaction takes place in two steps in dichloromethane and involves formation of a stable zwitterionic intermediate. QTAIM analysis indicated that the interaction of the BF3 LA with ACR during the reaction has non-covalent character with partial covalent one. Finally, NCI analysis of TSs explained satisfactorily the preference formation of the cis cycloadduct.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Domingo LR (2016) Molecules 21:1319

    Article  PubMed Central  CAS  Google Scholar 

  2. Bader RF (1985) Acc Chem Res 18:9

    Article  CAS  Google Scholar 

  3. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) J Am Chem Soc 132:6498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Domingo LR, Ríos-Gutiérrez M, Pérez P (2016) Molecules 21:748

    Article  PubMed Central  CAS  Google Scholar 

  5. Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397

    Article  CAS  Google Scholar 

  6. Diels O, Alder K (1928) Justus Liebigs Ann Chem 460:98

    Article  CAS  Google Scholar 

  7. Craig D, Spreadbury SR, White AJ (2020) Chem Commun 56:9803

    Article  CAS  Google Scholar 

  8. Li S, Lu H, Xu Z, Wei F (2021) Org Chem Front 8:1770

    Article  CAS  Google Scholar 

  9. Parmar NJ, Labana BM, Barad HA, Kant R, Gupta VK (2014) Monatsh Chem 145:1179

    Article  CAS  Google Scholar 

  10. Carey FA, Sundberg RJ (2007) Advanced organic chemistry: part A: structure and mechanisms. Springer Science & Business Media, Berlin

    Google Scholar 

  11. Woodward RB, Hoffmann R (1969) Angew Chem Int Ed 8:781

    Article  CAS  Google Scholar 

  12. Domingo LR, Ríos-Gutiérrez M, Silvi B, Pérez P (2018) Eur J Org Chem 2018:1107

    Article  CAS  Google Scholar 

  13. Tietze LF, Kettschau G (1997) Hetero Diels-Alder reactions in organic chemistry. In: Metz P (ed) Stereoselective heterocyclic synthesis I. Topics in current chemistry, vol 189. Springer, Berlin

  14. Tietze LF, Voβ E, Harms K, Sheldrick GM (1985) Tetrahedron Lett 26:5273

    Article  CAS  Google Scholar 

  15. Tietze LF (1996) Chem Rev 96:115

    Article  CAS  PubMed  Google Scholar 

  16. Tietze LF, Beifuss U (1993) Angew Chem Int Ed 32:131

    Article  Google Scholar 

  17. Kalalbandi VKA, Bijjaragi SC, Seetharamappa J (2018) ChemistrySelect 3:3925

    Article  CAS  Google Scholar 

  18. Lawrence J-MI, Floreancig PE (2020) Org Lett 22:9513

    Article  CAS  PubMed  Google Scholar 

  19. Srinivasa A, Mahadevan KM, Hosamani KM, Hulikal V (2008) Monatsh Chem 139:141

    Article  CAS  Google Scholar 

  20. Pałasz A, Bogdanowicz-Szwed K (2008) Monatsh Chem 139:647

    Article  CAS  Google Scholar 

  21. Jørgensen KA (2004) Eur J Org Chem 2004:2093

    Article  CAS  Google Scholar 

  22. Hatano M, Sakamoto T, Mochizuki T, Ishihara K (2019) Asian J Org Chem 8:1061

    Article  CAS  Google Scholar 

  23. Soleymani M (2020) J Fluorine Chem 109566

  24. Soleymani M, Chegeni ZK (2019) J Mol Graphics Modell 92:256

    Article  CAS  Google Scholar 

  25. Soleymani M, Dashti Khavidaki H (2021) Chem Pap 75:951

    Article  CAS  Google Scholar 

  26. Soleymani M (2018) Monatsh Chem 149:2183

    Article  CAS  Google Scholar 

  27. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793

    Article  CAS  PubMed  Google Scholar 

  28. Domingo LR, Ríos-Gutiérrez M, Pérez P (2020) RSC Adv 10:15394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Domingo LR, Aurell MJ, Pérez P, Contreras R (2002) Tetrahedron 58:4417

    Article  CAS  Google Scholar 

  30. Jaramillo P, Domingo LR, Chamorro E, Pérez P (2008) J Mol Struct THEOCHEM 865:68

    Article  CAS  Google Scholar 

  31. Domingo LR, Pérez P (2020) J Org Chem 85:13121

    Article  CAS  PubMed  Google Scholar 

  32. Aurell MJ, Domingo LR, Pérez P, Contreras R (2004) Tetrahedron 60:11503

    Article  CAS  Google Scholar 

  33. Domingo LR, Pérez P, Sáez JA (2013) RSC Adv 3:1486

    Article  CAS  Google Scholar 

  34. Chamorro E, Pérez P, Domingo LR (2013) Chem Phys Lett 582:141

    Article  CAS  Google Scholar 

  35. Laidler KJ (1969) Theories of chemical reaction rates. McGraw-Hill, New York

    Google Scholar 

  36. Domingo LR (2014) RSC Adv 4:32415

    Article  CAS  Google Scholar 

  37. Saha S, Sastry GN (2015) J Phys Chem B 119:11121

    Article  CAS  PubMed  Google Scholar 

  38. Cremer D, Kraka E (1984) Angew Chem Int Ed 23:627

    Article  Google Scholar 

  39. Espinosa E, Alkorta I, Elguero J, Molins E (2002) J Chem Phys 117:5529

    Article  CAS  Google Scholar 

  40. Zhao Y, Truhlar DG (2006) J Phys Chem A 110:5121

    Article  CAS  PubMed  Google Scholar 

  41. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  42. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523

    Article  CAS  Google Scholar 

  43. Barone V, Cossi M (1998) J Phys Chem A 102:1995

    Article  CAS  Google Scholar 

  44. Kohn W, Becke AD, Parr RG (1996) J Phys Chem 100:12974

    Article  CAS  Google Scholar 

  45. Chattaraj PK, Sarkar U, Roy DR (2006) Chem Rev 106:2065

    Article  CAS  PubMed  Google Scholar 

  46. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512

    Article  CAS  Google Scholar 

  47. Parr RG, Weitao Y (1989) Density-functional theory of atoms and molecules. Oxford University Press Hill, Oxford

    Google Scholar 

  48. Koopmans T (1934) Physica 1:104

    Article  Google Scholar 

  49. Domingo LR, Chamorro E, Pérez P (2008) J Org Chem 73:4615

    Article  CAS  PubMed  Google Scholar 

  50. Parr RG, Szentpaly Lv, Liu S (1999) J Am Chem Soc 121:1922

    Article  CAS  Google Scholar 

  51. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735

    Article  CAS  Google Scholar 

  52. Biegler-König F, Schönbohm J, Bayles D (2001) J Comput Chem 22:545

    Article  Google Scholar 

  53. Lu T, Chen F (2012) J Comput Chem 33:580

    Article  PubMed  CAS  Google Scholar 

  54. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE Jr, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gussian 09, Revision E. 01. Gaussian Inc, Wallingford

    Google Scholar 

Download references

Acknowledgements

We are thankful to the Research Council and Office of Graduate Studies of the Ayatollah Boroujerdi University for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mousa Soleymani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 63 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleymani, M., Chegeni, M. & Mohammadi, E. BF3-catalyzed oxa-Diels–Alder reaction of ethyl vinyl sulfide and β-methyl-α-phenylacrolein: a molecular electron density theory study. Monatsh Chem 152, 1209–1221 (2021). https://doi.org/10.1007/s00706-021-02841-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-021-02841-4

Keywords

Navigation