Skip to main content
Log in

Electrochemical evidence for catechol oxidation by ruthenium(II) organometallics of 2’-hydroxychalcones

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Cyclic voltammetry was used to provide the electrochemical evidence of catalytic catechol oxidation by ruthenium organometallics of chloro-substituted 2’-hydroxychalcones and to get partial insight into the mechanistic process. The catalytic properties of organometallics were measured in methanol, ethanol, and acetonitrile and the solvent effect was confirmed. The assignation of peaks in cyclic voltammograms was made systematically by characterizing all individual components of the catalytic mixture. The cathodic peak arising from electrochemical reduction of catalytically formed quinone near − 0.4 V vs. Ag/AgCl evolves over time and can be used for kinetic measurements. The formation of new peak at + 0.1 V vs. Ag/AgCl indicates that catechol oxidation to quinone proceeds via semiquinone formation in the presence of ruthenium organometallics. The kinetic profile of the catechol oxidation in the presence of ruthenium organometallics differs from each other and the rates of oxidation are well correlated with spectrophotometric measurements. Several advantages of electrochemistry over spectrophotometry were addressed. The obtained results demonstrate that electrochemistry can be used as a comparative method to spectrophotometry to measure the catalytic catechol oxidation and provide useful qualitative and quantitative data on kinetics and mechanism of catechol oxidation.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gerdemann C, Eicken C, Krebs B (2002) Acc Chem Res 35:183

    Article  CAS  Google Scholar 

  2. Eicken C, Krebs B, Sacchettini JC (1999) Curr Opin Struct Biol 9:677

    Article  CAS  Google Scholar 

  3. Klabunde T, Eicken C, Sacchettini JC, Krebs B (1998) Nature Struct Biol 5:1084

    Article  CAS  Google Scholar 

  4. Bolton JL, Dunlap T (2017) Chem Res Toxicol 30:13

    Article  CAS  Google Scholar 

  5. Huskinson B, Marshak MP, Suh C, Er S, Gerhardt MR, Galvin CJ, Chen X, Aspuru-Guzik A, Gordon RG, Aziz MJ (2014) Nature 505:195

    Article  CAS  Google Scholar 

  6. Elhabiri M, Siri O, Sornosa-Tent A, Albrecht-Gary AM, Braunstein P (2004) Chem Eur J 10:134

    Article  CAS  Google Scholar 

  7. Doğru YZ, Erat M (2012) Food Res Int 49:411

    Article  Google Scholar 

  8. Csay T, Kripli B, Giorgi M, Kaizer J, Speier G (2010) Inorg Chem Commun 13:227

    Article  CAS  Google Scholar 

  9. Wendt F, Näther C, Tuczek F (2016) J Biol Inorg Chem 21:777

    Article  CAS  Google Scholar 

  10. Dey SK, Mukherjee A (2014) New J Chem 38:4985

    Article  CAS  Google Scholar 

  11. Banu KS, Chattopadhyay T, Banerjee A, Mukherjee M, Bhattacharya S, Patra GK, Zangrando E, Das D (2009) Dalton Trans 8755

  12. Elgrishi N, Rountree KJ, Mccarthy BD, Rountree ES, Eisenhart TT, Dempsey JL (2018) J Chem Educ 95:197

    Article  CAS  Google Scholar 

  13. Zahirović A, Roca S, Višnjevac A, Kahrović E (2021) J Organomet Chem 121863

  14. Reim J, Krebs B (1997) J Chem Soc, Dalton Trans 3793

  15. Mahato S, Meheta N, Kotakonda M, Joshi M, Shit M, Choudhury AR, Biswas B (2021) Polyhedron 194:114933

  16. Das S, Sahu A, Joshi M, Paul S, Shit M, Roy Choudhury A, Biswas B (2018) ChemistrySelect 3:10774

    Article  CAS  Google Scholar 

  17. Pal S, Chowdhury B, Patra M, Maji M, Biswas B (2015) Spectrochim Acta A Mol Biomol Spectrosc 144:148

    Article  CAS  Google Scholar 

  18. Guha A, Chattopadhyay T, Paul ND, Mukherjee M, Goswami S, Mondal TK, Zangrando E, Das D (2012) Inorg Chem 51:8750

    Article  CAS  Google Scholar 

  19. Ramadan AEMM, Shaban SY, Ibrahim MM, Eissa H, Al-Saidi HM, Fathy AM (2020) J Chin Chem Soc 67:1387

    Article  CAS  Google Scholar 

  20. Adak P, Mondal A, Chattopadhyay SK (2020) New J Chem 44:3748

    Article  CAS  Google Scholar 

  21. Kaizer J, Baráth G, Csonka R, Speier G, Korecz L, Rockenbauer A, Párkányi L (2008) J Inorg Biochem 102:773

    Article  CAS  Google Scholar 

  22. Das S, Maiti P, Ghosh T, Zangrando E, Das D (2012) Inorg Chem Commun 15:266

    Article  CAS  Google Scholar 

  23. Nanjundan N, Narayanasamy R, Geib S, Velmurugan K, Nandhakumar R, Balakumaran MD, Kalaichelvan PT (2016) Polyhedron 110:203

    Article  CAS  Google Scholar 

  24. Sanyal R, Dash SK, Kundu P, Mandal D, Roy S, Das D (2016) Inorg Chim Acta 453:394

    Article  CAS  Google Scholar 

  25. Kahrovic E, Zahirovic A, Visnjevac A, Osmankovic I, Turkusic E, Kurtagic H (2018) Croat Chem Acta 91:195

    Article  CAS  Google Scholar 

  26. Stallings MD, Morrison MM, Sawyer DT (1981) Inorg Chem 20:2655

    Article  CAS  Google Scholar 

  27. Benelli C, Dei A, Gatteschi D, Pardi L (1989) Inorg Chim Acta 163:99

    Article  CAS  Google Scholar 

  28. Haga M, Dodsworth ES, Lever A (1986) Inorg Chem 25:447

    Article  CAS  Google Scholar 

  29. Benelli C, Dei A, Gatteschi D, Pardi L (1988) Inorg Chem 27:2831

    Article  CAS  Google Scholar 

  30. Harmalker S, Jones SE, Sawyer DT (1983) Inorg Chem 22:2790

    Article  CAS  Google Scholar 

  31. Downs HH, Buchanan RM, Pierpont CG (1979) Inorg Chem 18:1736

    Article  CAS  Google Scholar 

  32. Bodini ME, Copia G, Robinson R, Sawyer DT (1983) Inorg Chem 22:126

    Article  CAS  Google Scholar 

  33. Bosserman PJ, Sawyer DT (1982) Inorg Chem 21:1545

    Article  CAS  Google Scholar 

  34. Dey D, Das S, Yadav HR, Ranjani A, Gyathri L, Roy S, Guin PS, Dhanasekaran D, Choudhury AR, Akbarsha MA (2016) Polyhedron 106:106

    Article  CAS  Google Scholar 

  35. Dey D, De A, Yadav HR, Guin PS, Choudhury AR, Kole N, Biswas B (2016) ChemistrySelect 1:1910

    Article  CAS  Google Scholar 

  36. Das S, Sahu A, Joshi M, Paul S, Shit M, Choudhury AR, Biswas B (2018) ChemistrySelect 3:10774

    Article  CAS  Google Scholar 

  37. Hitomi Y, Ando A, Matsui H, Ito T, Tanaka T, Ogo S, Funabiki T (2005) Inorg Chem 44:3473

    Article  CAS  Google Scholar 

  38. Chakraborty P, Adhikary J, Ghosh B, Sanyal R, Chattopadhyay SK, Bauzá A, Frontera A, Zangrando E, Das D (2014) Inorg Chem 53:8257

    Article  CAS  Google Scholar 

  39. Ulas G, Lemmin T, Wu Y, Gassner GT, Degrado WF (2016) Nature Chem 8:354

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Federal Ministry of Education and Science of Bosnia and Herzegovina (grant no. 05-39-2619-1/18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emira Kahrović.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahirović, A., Kahrović, E. Electrochemical evidence for catechol oxidation by ruthenium(II) organometallics of 2’-hydroxychalcones. Monatsh Chem 152, 1193–1200 (2021). https://doi.org/10.1007/s00706-021-02842-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-021-02842-3

Keywords

Navigation