Skip to main content

Advertisement

Log in

Knockdown of Golgi Stress-Responsive Caspase-2 Ameliorates HLD17-Associated AIMP2 Mutant-Mediated Inhibition of Oligodendroglial Cell Morphological Differentiation

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Hypomyelinating leukodystrophy 17 is an autosomal recessive disease affecting myelin-forming oligodendroglial cells in the central nervous system. The gene responsible for HLD17 encodes aminoacyl-tRNA synthase complex-interacting multifunctional protein 2, whose product proteins form a scaffold that supports aminoacyl-tRNA synthetases throughout the cell body. Here we show that the HLD17-associated nonsense mutation (Tyr35-to-Ter [Y35X]) of AIMP2 localizes AIMP2 proteins as aggregates into the Golgi bodies in mouse oligodendroglial FBD-102b cells. Wild type AIMP2 proteins, in contrast, are distributed throughout the cell body. Expression of the Y35X mutant proteins, but not the wild type proteins, in cells upregulates Golgi stress signaling involving caspase-2 activation. Cells expressing the wild type proteins exhibit differentiated phenotypes with web-like structures bearing many processes following the induction of differentiation, whereas cells expressing the Y35X mutant proteins fail to differentiate. Furthermore, CASP2 knockdown but not control knockdown reverses the phenotypes of cells expressing the mutant proteins. These results suggest that HLD17-associated AIMP2 mutant proteins are localized in the Golgi bodies where their proteins stimulate Golgi stress-responsive CASP2 to inhibit differentiation; this effect is ameliorated by knockdown of CASP2. These findings may reveal some of the molecular and cellular pathological mechanisms underlying HLD17 and possible approaches to ameliorating the disease’s effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Garbern J, Cambi F, Shy M, Kamholz J (1999) The molecular pathogenesis of Pelizaeus-Merzbacher disease. Arch Neurol 56:1210–1214

    Article  CAS  Google Scholar 

  2. Wolf NI, Ffrench-Constant C, van der Knaap MS (2021) Hypomyelinating leukodystrophies-unravelling myelin biology. Nat Rev Neurol 17:88–103

    Article  CAS  Google Scholar 

  3. Inoue K (2019) Pelizaeus-Merzbacher disease: molecular and cellular pathologies and associated phenotypes. Adv Exp Med Biol 1190:201–216

    Article  CAS  Google Scholar 

  4. Dhaunchak AS, Colman DR, Nave KA (2011) Misalignment of PLP/DM20 transmembrane domains determines protein misfolding in Pelizaeus-Merzbacher disease. J Neurosci 31:14961–14971

    Article  CAS  Google Scholar 

  5. Lin W, Lin Y, Li J, Fenstermaker AG, Way SW, Clayton B, Jamison S, Harding HP, Ron D, Popko B (2013) Oligodendrocyte-specific activation of PERK signaling protects mice against experimental autoimmune encephalomyelitis. J Neurosci 33:5980–5991

    Article  CAS  Google Scholar 

  6. Sawaguchi S, Goto M, Kato Y, Tanaka M, Tago K, Oizumi H, Ohbuchi K, Mizoguchi K, Miyamoto Y, Yamauchi J (2021) Hypomyelinating leukodystrophy 15 (HLD15)-associated mutation of EPRS1 leads to its polymeric aggregation in Rab7-positive vesicle structures, inhibiting oligodendroglial cell morphological differentiation. Polymers 13:1074

    Article  CAS  Google Scholar 

  7. Simons M, Lyons DA (2013) Axonal selection and myelin sheath generation in the central nervous system. Curr Opin Cell Biol 25:512–519

    Article  CAS  Google Scholar 

  8. Morton PD, Ishibashi N, Jonas RA, Gallo V (2015) Congenital cardiac anomalies and white matter injury. Trends Neurosci 38:353–563

    Article  CAS  Google Scholar 

  9. Saab AS, Nave KA (2017) Myelin dynamics: protecting and shaping neuronal functions. Curr Opin Neurobiol 47:104–112

    Article  CAS  Google Scholar 

  10. Abu-Rub M, Miller RH (2018) Emerging cellular and molecular strategies for enhancing central nervous system (CNS) remyelination. Brain Sci 8:E111

    Article  Google Scholar 

  11. Shukla A, Das Bhowmik A, Hebbar M, Rajagopal KV, Girisha KM, Gupta N, Dalal A (2018) Homozygosity for a nonsense variant in AIMP2 is associated with a progressive neurodevelopmental disorder with microcephaly, seizures, and spastic quadriparesis. J Hum Genet 63:19–25

    Article  CAS  Google Scholar 

  12. Kim JH, Han JM, Kim S (2014) Protein-protein interactions and multi-component complexes of aminoacyl-tRNA synthetases. Top Curr Chem 344:119–144

    Article  CAS  Google Scholar 

  13. Hahn H, Park SH, Kim HJ, Kim S, Han BW (2019) The DRS-AIMP2-EPRS subcomplex acts as a pivot in the multi-tRNA synthetase complex. IUCr J 6:958–967

    Article  CAS  Google Scholar 

  14. Cho HY, Lee HJ, Choi YS, Kim DK, Jin KS, Kim S, Kang BS (2019) Symmetric assembly of a decameric subcomplex in human multi-tRNA synthetase complex via interactions between glutathione transferase-homology domains and aspartyl-tRNA synthetase. J Mol Biol 431:4475–4496

    Article  CAS  Google Scholar 

  15. Hei Z, Wu S, Liu Z, Wang J, Fang P (2019) Retractile lysyl-tRNA synthetase-AIMP2 assembly in the human multi-aminoacyl-tRNA synthetase complex. J Biol Chem 294:4775–4783

    Article  CAS  Google Scholar 

  16. Machamer CM (2015) The Golgi complex in stress and death. Front Neurosci 9:421

    Article  Google Scholar 

  17. Taniguchi M, Yoshida H (2017) TFE3, HSP47, and CREB3 pathways of the mammalian Golgi stress response. Cell Struct Funct 42:27–36

    Article  CAS  Google Scholar 

  18. Sasaki K, Yoshida H (2019) Golgi stress response and organelle zones. FEBS Lett S593:2330–2340

    Article  Google Scholar 

  19. Olsson M, Forsberg J, Zhivotovsky B (2015) Caspase-2: the reinvented enzyme. Oncogene 34:1877–1882

    Article  CAS  Google Scholar 

  20. Reiling JH, Olive AJ, Sanyal S, Carette JE, Brummelkamp TR, Ploegh HL, Starnbach MN, Sabatini DM (2013) A CREB3–ARF4 signalling pathway mediates the response to Golgi stress and susceptibility to pathogens. Nat Cell Biol 15:1473–1485

    Article  CAS  Google Scholar 

  21. Taniguchi M, Nadanaka S, Tanakura S, Sawaguchi S, Midori S, Kawai Y, Yamaguchi S, Shimada Y, Nakamura Y, Matsumura Y, Fujita N, Araki N, Yamamoto M, Oku M, Wakabayashi S, Kitagawa H, Yoshida H (2015) TFE3 is a bHLH-ZIP-type transcription factor that regulates the mammalian Golgi stress response. Cell Struct Funct 40:13–30

    Article  Google Scholar 

  22. Miyata S, Mizuno T, Koyama Y, Katayama T, Tohyama M (2013) The endoplasmic reticulum-resident chaperone heat shock protein 47 protects the Golgi apparatus from the effects of O-glycosylation inhibition. PLoS One 8:e69732

    Article  CAS  Google Scholar 

  23. Matsumoto N, Miyamoto Y, Hattori K, Ito A, Harada H, Oizumi H, Ohbuchi K, Mizoguchi K, Yamauchi J (2020) PP1C and PP2A are p70S6K phosphatases whose inhibition ameliorates HLD12-associated inhibition of oligodendroglial cell morphological differentiation. Biomedicines 8:89

    Article  CAS  Google Scholar 

  24. Hattori K, Tago K, Memezawa S, Ochiai A, Sawaguchi S, Kato Y, Sato T, Tomizuka K, Ooizumi H, Ohbuchi K, Mizoguchi K, Miyamoto Y, Yamauchi J (2021) The infantile leukoencephalopathy-associated mutation of C11ORF73/HIKESHI proteins generates de novo interactive activity with Filamin A, inhibiting oligodendroglial cell morphological differentiation. Medicines 8:9

    Article  CAS  Google Scholar 

  25. Miyamoto Y, Torii T, Tanoue A, Yamauchi J (2016) VCAM1 acts in parallel with CD69 and is required for the initiation of oligodendrocyte myelination. Nat Commun 7:13478

    Article  CAS  Google Scholar 

  26. Miyamoto Y, Torii T, Tago K, Tanoue A, Takashima S, Yamauchi J (2018) BIG1/Arfgef1 and Arf1 regulate the initiation of myelination by Schwann cells in mice. Sci. Adv 4:eaar4471

    Article  Google Scholar 

  27. Feinstein M, Markus B, Noyman I, Shalev H, Flusser H, Shelef I, Liani-Leibson K, Shorer Z, Cohen I, Khateeb S et al (2010) Pelizaeus-Merzbacher-like disease caused by AIMP1/p43 homozygous mutation. Am J Hum Genet 87:820–828

    Article  CAS  Google Scholar 

  28. Biancheri R, Rossi A, Zara F, Filocamo M (2010) AIMP1/p43 mutation and PMLD. Am J Hum Genet 88:391

    Article  Google Scholar 

  29. Boespflug-Tanguy O, Aubourg P, Dorboz I, Bégou M, Giraud G, Sarret C, Vaurs-Barrière C (2010) Neurodegenerative disorder related to AIMP1/p43 mutation is not a PMLD. Am J Hum Genet 88:392–393

    Article  Google Scholar 

  30. Takeuchi Y, Tanaka M, Okura N, Fukui Y, Noguchi K, Hayashi Y, Torii T, Ooizumi H, Ohbuchi K, Mizoguchi K, Miyamoto Y, Yamauchi J (2020) Rare neurologic disease-associated mutations of AIMP1 are related with inhibitory neuronal differentiation which is reversed by ibuprofen. Medicines 7:25

    Article  CAS  Google Scholar 

  31. Wolf NI, Salomons GS, Rodenburg RJ, Pouwels PJW, Schieving JH, Derks TGJ, Fock JM, Rump P, van Beek DM, van der Knaap MS, Waisfisz QM (2014) Mutations in RARS cause hypomyelination. Ann Neurol 76:134–139

    Article  CAS  Google Scholar 

  32. Nafisinia M, Sobreira N, Riley L, Gold W, Uhlenberg B, Weiss C, Boehm C, Prelog K, Ouvrier R, Christodoulou J (2017) Mutations in RARS cause a hypomyelination disorder akin to Pelizaeus-Merzbacher disease. Eur J Hum Genet 25:1134–1141

    Article  CAS  Google Scholar 

  33. Matsumoto N, Watanabe N, Iibe N, Tatsumi Y, Hattori K, Takeuchi Y, Oizumi H, Ohbuchi K, Torii T, Miyamoto Y, Yamauchi J (2019) Hypomyelinating leukodystrophy-associated mutation of RARS leads it to the lysosome, inhibiting oligodendroglial morphological differentiation. Biochem. Biophys. Rep 20:100705

    PubMed  PubMed Central  Google Scholar 

  34. Mendes MI, Gutierrez Salazar M, Guerrero K, Thiffault I, Salomons GS, Gauquelin L, Tran LT, Forget D, Gauthier MS, Waisfisz Q, Smith DEC, Simons C, van der Knaap MS, Marquardt I, Lemes A, Mierzewska H, Weschke B, Koehler W, Coulombe B, Wolf NI, Bernard G (2018) Bi-allelic mutations in EPRS, encoding the glutamyl-prolyl-aminoacyl-tRNA synthetase, cause a hypomyelinating leukodystrophy. Am J Hum Genet 102:676–684

    Article  CAS  Google Scholar 

  35. Taft RJ, Vanderver A, Leventer RJ, Damiani SA, Simons C, Grimmond SM, Miller D, Schmidt J, Lockhart PJ, Pope K, Ru K, Crawford J, Rosser T, de Coo Irenaeus FFM, Juneja M, Ishwar CV, Prabhakar P, Blaser S, Wolf NI (2013) Mutations in DARS cause hypomyelination with brain stem and spinal cord involvement and leg spasticity. Am. J. Hum. Genet 92:774–780

    Article  CAS  Google Scholar 

  36. Ko HS, Lee Y, Shin JH, Karuppagounder SS, Gadad BS, Koleske AJ, Pletnikova O, Troncoso JC, Dawson VL, Dawson TM (2010) Phosphorylation by the c-Abl protein tyrosine kinase inhibits parkin’s ubiquitination and protective function. Proc Natl Acad Sci USA 107:16691–16696

    Article  CAS  Google Scholar 

  37. Imam SZ, Zhou Q, Yamamoto A, Valente AJ, Ali SF, Bains M, Roberts JL, Kahle PJ, Clark RA, Li S (2011) Novel regulation of parkin function through c-Abl-mediated tyrosine phosphorylation: implications for Parkinson’s disease. J Neurosci 31:157–163

    Article  CAS  Google Scholar 

  38. Ham S, Yun SP, Kim H, Kim D, Seo BA, Kim H, Shin JY, Dar MA, Lee GH, Lee YI, Kim D, Kim S, Kweon HS, Shin JH, Ko HS, Lee Y (2020) Amyloid-like oligomerization of AIMP2 contributes to α-synuclein interaction and Lewy-like inclusion. Sci. Transl. Med 12:eaax0091

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Yoshihiro Hayashi (Tokyo University of Pharmacy and Life Sciences) for his insightful comments they provided throughout this study. We also thank Dr. Chris Rowthorn (Chris Rowthorn Japan, Co. Ltd.) for English proofreading.

Funding

This work was supported by Grants-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT). This work was also supported by Grants-in-Aid for Medical Scientific Research from the Japanese Ministry of Health, Labor, and Welfare (MHLW).

Author information

Authors and Affiliations

Authors

Contributions

JY designed and organized this study. YM and JY wrote and edited this manuscript. AO, SS, YS, and TM performed the experiments. AO and SS performed the statistical analyses. KO, MY, and KM provided unpublished materials.

Corresponding author

Correspondence to Junji Yamauchi.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochiai, A., Sawaguchi, S., Memezawa, S. et al. Knockdown of Golgi Stress-Responsive Caspase-2 Ameliorates HLD17-Associated AIMP2 Mutant-Mediated Inhibition of Oligodendroglial Cell Morphological Differentiation. Neurochem Res 47, 2617–2631 (2022). https://doi.org/10.1007/s11064-021-03451-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03451-6

Keywords

Navigation