Skip to main content
Log in

Sobolev Orthogonal Polynomials of Several Variables on Product Domains

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

Sobolev orthogonal polynomials of d variables on the product domain \(\Omega :=[a_1,b_1]\times \cdots \times [a_d,b_d]\) with respect to the inner product

$$\begin{aligned} \left\langle f,g\right\rangle _S= c\int _\Omega \nabla ^\kappa f({\mathbf {x}})\cdot \nabla ^\kappa g({\mathbf {x}})W({\mathbf {x}}){\mathrm{d}}{\mathbf {x}}+ \sum _{i=0}^{\kappa -1}\lambda _i \nabla ^ i f({\mathbf {p}})\cdot \nabla ^i g({\mathbf {p}}), \kappa \in {\mathbb {N}}, \end{aligned}$$

are constructed, where \(\nabla ^i f\), \(i=0,1,2,\ldots ,\kappa \), is a column vector which contains all the partial derivatives of order i of f, \({\mathbf {x}}:=(x_1,x_2,\ldots ,x_d)\in {\mathbb {R}}^d\), \({\mathrm{d}}{\mathbf {x}}:={\mathrm{d}}x_1{\mathrm{d}}x_2\cdots {\mathrm{d}}x_d\), \(W({\mathbf {x}}):=w_1(x_1)w_2(x_2)\cdots w_d(x_d)\) is a product weight function on \(\Omega \), \(w_i\) is a weight function on \([a_i,b_i]\), \(i=1,2,\ldots ,d\), \(\lambda _i >0\) for \(i=0,1,\ldots ,\kappa -1\), \({\mathbf {p}}=(p_1,p_2,\ldots ,p_d)\) is a point in \({\mathbb {R}}^d\), typically on the boundary of \(\Omega \), and c is the normalization constant of W. The main result consists of a generalization to several variables and higher order derivatives of some results which are presented in the literature of Sobolev orthogonal polynomials in two variables; namely, properties involving the integral part in \(\left\langle \cdot ,\cdot \right\rangle _S\), a connection formula, and a recursive relation for constructing iteratively the polynomials. To illustrate the main ideas, we present a new example for the Hermite–Hermite–Laguerre product weight function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aktaş, R., Xu, Y.: Sobolev orthogonal polynomials on a simplex. Int. Math. Res. Not. 2013(13), 3087–3131 (2012)

    Article  MathSciNet  Google Scholar 

  2. Alfaro, M., Pérez, T.E., Piñar, M.A., Rezola, M.L.: Sobolev orthogonal polynomials: the discrete-continuous case. Methods Appl. Anal. 6(4), 593–616 (1999)

    MathSciNet  MATH  Google Scholar 

  3. Althammer, P.: Eine erweiterung des orthogonalitätsbegriffes bei polynomen und deren anwendung auf die beste approximation. J. Reine Angew. Math. 211, 192–204 (1962)

    MathSciNet  MATH  Google Scholar 

  4. Álvarez-Nodarse, R., Moreno-Balcázar, J.J.: Asymptotic properties of generalized Laguerre orthogonal polynomials. Indag. Math. (N.S.) 15(2), 151–165 (2004)

    Article  MathSciNet  Google Scholar 

  5. Atkinson, K., Hansen, O.: Solving the nonlinear Poisson equation on the unit disk. J. Integral Equ. Appl. 17(3), 223–241 (2005)

    Article  MathSciNet  Google Scholar 

  6. Bracciali, C.F., Delgado, A.M., Fernández, L., Pérez, T.E., Piñar, M.A.: New steps on Sobolev orthogonality in two variables. J. Comput. Appl. Math. 235(4), 916–926 (2010)

    Article  MathSciNet  Google Scholar 

  7. Dai, F., Xu, Y.: Polynomial approximation in Sobolev spaces on the unit sphere and the unit ball. J. Approx. Theory 163(10), 1400–1418 (2011)

    Article  MathSciNet  Google Scholar 

  8. Delgado, A.M., Fernández, L., Lubinsky, D.S., Pérez, T.E., Piñar, M.A.: Sobolev orthogonal polynomials on the unit ball via outward normal derivatives. J. Math. Anal. Appl. 440(2), 716–740 (2016)

    Article  MathSciNet  Google Scholar 

  9. Delgado, A.M., Pérez, T.E., Piñar, M.A.: Sobolev-type orthogonal polynomials on the unit ball. J. Approx. Theory 170, 94–106 (2013)

    Article  MathSciNet  Google Scholar 

  10. Dimitrov, D.K., Marcellán, F., Rafaeli, F.R.: Monotonicity of zeros of Laguerre–Sobolev-type orthogonal polynomials. J. Math. Anal. Appl. 368(1), 80–89 (2010)

    Article  MathSciNet  Google Scholar 

  11. Dimitrov, D.K., Mello, M.V., Rafaeli, F.R.: Monotonicity of zeros of Jacobi–Sobolev type orthogonal polynomials. Appl. Numer. Math. 60(3), 263–276 (2010)

    Article  MathSciNet  Google Scholar 

  12. Dueñas, H.A., Garza, L.E.: Jacobi–Sobolev-type orthogonal polynomials: holonomic equation and electrostatic interpretation—a non-diagonal case. Integral Transforms Spec. Funct. 24(1), 70–83 (2013)

    Article  MathSciNet  Google Scholar 

  13. Dueñas, H.A., Garza, L.E., Piñar, M.A.: A higher order Sobolev-type inner product for orthogonal polynomials in several variables. Numer. Algorithms 68(1), 35–46 (2015)

    Article  MathSciNet  Google Scholar 

  14. Dueñas, H.A., Marcellán, F.: The Laguerre–Sobolev-type orthogonal polynomials. J. Approx. Theory 162(2), 421–440 (2010)

    Article  MathSciNet  Google Scholar 

  15. Dueñas, H.A., Marcellán, F.: The Laguerre–Sobolev-type orthogonal polynomials. Holonomic equation and electrostatic interpretation. Rocky Mt. J. Math. 41(1), 95–131 (2011)

    Article  MathSciNet  Google Scholar 

  16. Dueñas, H.A., Pinzón-Cortés, N., Salazar-Morales, O.: Sobolev orthogonal polynomials of high order in two variables defined on product domains. Integral Transforms Spec. Funct. 28(12), 988–1008 (2017)

    Article  MathSciNet  Google Scholar 

  17. Duistermaat, J.J., Kolk, J.A.C.: Distributions: Theory and Applications. Cornerstones. Birkhäuser, Basel (2010)

    Book  Google Scholar 

  18. Dunkl, C.F., Xu, Y.: Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics and Its Applications, vol. 155, 2nd edn. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  19. Everitt, W.N., Kwon, K.H., Littlejohn, L.L., Wellman, R.: On the spectral analysis of the Laguerre polynomials \(\{L_n^{-k}(x)\}\) for positive integers \(k\). In: Hinton, D., Schaefer, P.W. (eds.) Spectral Theory and Computational Methods of Sturm–Liouville Problems (Knoxville, TN, 1996). Lecture Notes in Pure and Applied Mathematics, vol. 191, pp. 251–283. Marcel Dekker, Inc., New York (1997)

    Google Scholar 

  20. Everitt, W.N., Littlejohn, L.L., Wellman, R.: The Sobolev orthogonality and spectral analysis of the Laguerre polynomials \(\{L_n^{-k}\}\) for positive integers \(k\). J. Comput. Appl. Math. 171(1–2), 199–234 (2004)

    Article  MathSciNet  Google Scholar 

  21. Fernández, L., Marcellán, F., Pérez, T.E., Piñar, M.A., Xu, Y.: Sobolev orthogonal polynomials on product domains. J. Comput. Appl. Math. 284, 202–215 (2015)

    Article  MathSciNet  Google Scholar 

  22. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  23. Jung, I.H., Kwon, K.H., Lee, J.K.: Sobolev orthogonal polynomials relative to \(\lambda p(c)q(c)+\langle \tau, p^{\prime }(x)q^{\prime }(x)\rangle \). Commun. Korean Math. Soc. 12(3), 603–617 (1997)

    MathSciNet  MATH  Google Scholar 

  24. Koornwinder, T.H.: Orthogonal polynomials with weight function \((1-x)^{\alpha }(1+x)^{\beta } + {M}\delta (x+1) + {N}\delta (x-1)\). Can. Math. Bull. 27(2), 205–214 (1984)

    Article  Google Scholar 

  25. Krall, A.M.: Orthogonal polynomials satisfying fourth order differential equations. Proc. R. Soc. Edinb. Sect. A 87(3–4), 271–288 (1981)

    Article  MathSciNet  Google Scholar 

  26. Krall, H.L.: On orthogonal polynomials satisfying a certain fourth order differential equation. Pa. State Coll. Stud. 1940(6), 1–24 (1940)

    MathSciNet  MATH  Google Scholar 

  27. Kwon, K.H., Littlejohn, L.L.: The orthogonality of the Laguerre polynomials \({L_n^{-k}(x)}_{n=0}^\infty \) for positive integers \(k\). In: Special Functions (Torino, 1993). Annals of Numerical Mathematics, vol. 2, pp. 289–303 (1995)

  28. Lewis, D.C.: Polynomial least square approximations. Am. J. Math. 69(2), 273–278 (1947)

    Article  MathSciNet  Google Scholar 

  29. Marcellán, F., Branquinho, A., Petronilho, J.C.: Classical orthogonal polynomials: a functional approach. Acta Appl. Math. 34(3), 283–303 (1994)

    Article  MathSciNet  Google Scholar 

  30. Marcellán, F., Xu, Y.: On Sobolev orthogonal polynomials. Expo. Math. 33, 308–352 (2015)

    Article  MathSciNet  Google Scholar 

  31. Martínez, C., Piñar, M.A.: Orthogonal polynomials on the unit ball and fourth-order partial differential equations. SIGMA Symmetry Integrability Geom. Methods Appl. 12, 1–11 (2016). Paper No. 020

  32. Martínez-Finkelshtein, A.: Asymptotic properties of Sobolev orthogonal polynomials. J. Comput. Appl. Math. 99, 491–510 (1998)

    Article  MathSciNet  Google Scholar 

  33. Martínez-Finkelshtein, A.: Analytic aspects of Sobolev orthogonal polynomials revisited. J. Comput. Appl. Math. 127, 255–266 (2001)

    Article  MathSciNet  Google Scholar 

  34. Meijer, H.G.: A short history of orthogonal polynomials in a Sobolev space. I. The non-discrete case. Nieuw Arch. Wisk. (4) 14(1), 93–112 (1996). 31st Dutch Mathematical Conference (Groningen, 1995)

  35. Mello, M.V., Paschoa, V.G., Pérez, T.E., Piñar, M.A.: Multivariate Sobolev-type orthogonal polynomials. Jaen J. Approx. 3(2), 241–259 (2011)

    MathSciNet  MATH  Google Scholar 

  36. Molano-Molano, L.A.: On asymptotic properties of Laguerre–Sobolev type orthogonal polynomials. Arab J. Math. Sci. 19(2), 173–186 (2013)

    MathSciNet  MATH  Google Scholar 

  37. Pérez, T.E., Piñar, M.A.: On Sobolev orthogonality for the generalized Laguerre polynomials. J. Approx. Theory 86(3), 278–285 (1996)

    Article  MathSciNet  Google Scholar 

  38. Pérez, T.E., Piñar, M.A., Xu, Y.: Weighted Sobolev orthogonal polynomials on the unit ball. J. Approx. Theory 171, 84–104 (2013)

    Article  MathSciNet  Google Scholar 

  39. Piñar, M.A., Xu, Y.: Orthogonal polynomials and partial differential equations on the unit ball. Proc. Am. Math. Soc. 137(9), 2979–2987 (2009)

    Article  MathSciNet  Google Scholar 

  40. Szegö, G.: Orthogonal Polynomials. American Mathematical Society Colloquium Publications, vol. 23, 4th edn. American Mathematical Society, Providence (1975)

    MATH  Google Scholar 

  41. Xu, Y.: A family of Sobolev orthogonal polynomials on the unit ball. J. Approx. Theory 138, 232–241 (2006)

    Article  MathSciNet  Google Scholar 

  42. Xu, Y.: Sobolev orthogonal polynomials defined via gradient on the unit ball. J. Approx. Theory 152, 52–65 (2008)

    Article  MathSciNet  Google Scholar 

  43. Xu, Y.: Approximation and orthogonality in Sobolev spaces on a triangle. Constr. Approx. 46(2), 349–434 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the valuable comments from the referees. They have greatly contributed to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Dueñas Ruiz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dueñas Ruiz, H., Salazar-Morales, O. & Piñar, M. Sobolev Orthogonal Polynomials of Several Variables on Product Domains. Mediterr. J. Math. 18, 227 (2021). https://doi.org/10.1007/s00009-021-01852-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-021-01852-z

Keywords

Mathematics Subject Classification

Navigation