Skip to main content
Log in

A modified first shear deformation theory for three-dimensional thermal post-buckling analysis of FGM plates

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this paper, the three-dimensional post-buckling analysis of functionally graded materials plate (FGM) with temperature independent (TID) and dependent (TD) material properties under different types of thermal loads is examined. The analysis is performed by a modified first-order enhanced solid-shell element. The formulation is based on the first-order shear deformation theory (FSDT) with a special representation of the transverse shear strains imposed in the compatible strain part. To subdue locking problems, two methods are employed the assumed natural strain (ANS) method and the enhanced assumed strain (EAS) method with a minimal number of internal parameters. Numerical results of the present research are compared and validated with the existing studies on the thermal post-buckling of FGM plates. Numerical results are also provided to explore the effects of power-law index and different geometrical parameters of the FGM plates subjected to different types of thermal loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Leushake U, Krell T, Schulz U (1997) Graded thermal barrier coating systems for gas turbine applications. Materialwiss Werkstofftech 28:391–394. https://doi.org/10.1002/mawe.19970280817

    Article  Google Scholar 

  2. Sasaki M, Hirai T (1991) Fabrication and properties of functionally gradient materials. J Ceram Soc Jpn 99:1002–1013. https://doi.org/10.2109/jcersj.99.1002

    Article  Google Scholar 

  3. Yang J, Shen H-S (2003) Non-linear analysis of functionally graded plates under transverse and in-plane loads. Int J Non-Linear Mech 38:467–482. https://doi.org/10.1016/S0020-7462(01)00070-1

    Article  MATH  Google Scholar 

  4. Tung HV (2015) Thermal and thermomechanical postbuckling of FGM sandwich plates resting on elastic foundations with tangential edge constraints and temperature dependent properties. Compos Struct 131:1028–1039. https://doi.org/10.1016/j.compstruct.2015.06.043

    Article  Google Scholar 

  5. Shen H-S (2007) Thermal postbuckling behavior of shear deformable FGM plates with temperature-dependent properties. Int J Mech Sci 49:466–478. https://doi.org/10.1016/j.ijmecsci.2006.09.011

    Article  Google Scholar 

  6. Duc ND, Tung HV (2011) Mechanical and thermal postbuckling of higher order shear deformable functionally graded plates on elastic foundations. Compos Struct 93:2874–2881. https://doi.org/10.1016/j.compstruct.2011.05.017

    Article  Google Scholar 

  7. Zhang D-G, Zhou H-M (2015) Mechanical and thermal post-buckling analysis of FGM rectangular plates with various supported boundaries resting on nonlinear elastic foundations. Thin-Walled Struct 89:142–151. https://doi.org/10.1016/j.tws.2014.12.021

    Article  Google Scholar 

  8. Zhang DG (2013) Modeling and analysis of FGM rectangular plates based on physical neutral surface and high order shear deformation theory. Int J Mech Sci 68:92–104. https://doi.org/10.1016/j.ijmecsci.2013.01.002

    Article  Google Scholar 

  9. Na K-S, Kim J-H (2006) Thermal postbuckling investigations of functionally graded plates using 3-D finite element method. Finite Elem Anal Des 42:749–756. https://doi.org/10.1016/j.finel.2005.11.005

    Article  Google Scholar 

  10. Prakash T, Singha MK, Ganapathi M (2008) Thermal postbuckling analysis of FGM skew plates. Eng Struct 30:22–32. https://doi.org/10.1016/j.engstruct.2007.02.012

    Article  Google Scholar 

  11. Zhang LW, Zhu P, Liew KM (2014) Thermal buckling of functionally graded plates using a local Kriging meshless method. Compos Struct 108:472–492. https://doi.org/10.1016/j.compstruct.2013.09.043

    Article  Google Scholar 

  12. Park JS, Kim JH (2006) Thermal postbuckling and vibration analyses of functionally graded plates. J Sound Vib 289:77–93. https://doi.org/10.1016/j.jsv.2005.01.031

    Article  MATH  Google Scholar 

  13. Lee C-Y, Kim J-H (2013) Hygrothermal postbuckling behavior of functionally graded plates. Compos Struct 95:278–282. https://doi.org/10.1016/j.compstruct.2012.07.010

    Article  Google Scholar 

  14. Trabelsi S, Zghal S, Dammak F (2020) Thermo-elastic buckling and post-buckling analysis of functionally graded thin plate and shell structures. J Braz Soc Mech Sci Eng 42:233. https://doi.org/10.1007/s40430-020-02314-5

    Article  Google Scholar 

  15. Trabelsi S, Frikha A, Zghal S, Dammak F (2019) A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells. Eng Struct 178:444–459. https://doi.org/10.1016/J.ENGSTRUCT.2018.10.047

    Article  Google Scholar 

  16. Trabelsi S, Frikha A, Zghal S, Dammak F (2018) Thermal post-buckling analysis of functionally graded material structures using a modified FSDT. Int J Mech Sci 144:74–89. https://doi.org/10.1016/J.IJMECSCI.2018.05.033

    Article  Google Scholar 

  17. Neves AMA, Ferreira AJM, Carrera E, Cinefra M, Roque CMC, Jorge RMN et al (2013) Free vibration analysis of functionally graded shells by a higher-order shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations. Eur J Mech A Solids 37:24–34. https://doi.org/10.1016/j.euromechsol.2012.05.005

    Article  MathSciNet  MATH  Google Scholar 

  18. Moita JS, Araújo AL, Correia VF, Mota Soares CM, Herskovits J (2020) Buckling behavior of composite and functionally graded material plates. Eur J Mech A Solids 80:103921. https://doi.org/10.1016/j.euromechsol.2019.103921

    Article  MathSciNet  MATH  Google Scholar 

  19. Lal A, Jagtap KR, Singh BN (2013) Post buckling response of functionally graded materials plate subjected to mechanical and thermal loadings with random material properties. Appl Math Model 37:2900–2920. https://doi.org/10.1016/j.apm.2012.06.013

    Article  MathSciNet  MATH  Google Scholar 

  20. Tanov R, Tabiei A (2000) Simple correction to the first-order shear deformation shell finite element formulations. Finite Elem Anal Des 35:189–197. https://doi.org/10.1016/S0168-874X(99)00069-4

    Article  MATH  Google Scholar 

  21. Najafizadeh MM, Heydari HR (2004) Thermal buckling of functionally graded circular plates based on higher order shear deformation plate theory. Eur J Mech A Solids 23:1085–1100. https://doi.org/10.1016/J.EUROMECHSOL.2004.08.004

    Article  MATH  Google Scholar 

  22. Samsam Shariat BA, Eslami MR (2006) Thermal buckling of imperfect functionally graded plates. Int J Solids Struct 43:4082–4096. https://doi.org/10.1016/j.ijsolstr.2005.04.005

    Article  MATH  Google Scholar 

  23. Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Meth Eng 29:1595–1638. https://doi.org/10.1002/NME.1620290802

    Article  MathSciNet  MATH  Google Scholar 

  24. Hajlaoui A, Triki E, Frikha A, Wali M, Dammak F (2017) Nonlinear dynamics analysis of FGM shell structures with a higher order shear strain enhanced solid-shell element. Latin Am J Solids Struct 14:72–91. https://doi.org/10.1590/1679-78253323

    Article  Google Scholar 

  25. de Alves SRJ, Natal JRM, Fontes VRA, César de SJMA, (2003) A new volumetric and shear locking-free 3D enhanced strain element. Eng Comput 20:896–925. https://doi.org/10.1108/02644400310502036

    Article  MATH  Google Scholar 

  26. Klinkel S, Gruttmann F, Wagner W (2006) A robust non-linear solid shell element based on a mixed variational formulation. Comput Methods Appl Mech Eng 195:179–201. https://doi.org/10.1016/J.CMA.2005.01.013

    Article  MATH  Google Scholar 

  27. Cardoso RPR, Yoon JW, Mahardika M, Choudhry S, de Alves SRJ, Fontes VRA (2008) Enhanced assumed strain (EAS) and assumed natural strain (ANS) methods for one-point quadrature solid-shell elements. Int J Numer Methods Eng 75:156–87. https://doi.org/10.1002/nme.2250

    Article  MathSciNet  MATH  Google Scholar 

  28. Andelfinger U, Ramm E (1993) EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements. Int J Numer Meth Eng 36:1311–1337. https://doi.org/10.1002/nme.1620360805

    Article  MATH  Google Scholar 

  29. Vu-Quoc L, Tan XG (2003) Optimal solid shells for non-linear analyses of multilayer composites. I. Statics. Comput Methods Appl Mech Eng 192:975–1016. https://doi.org/10.1016/S0045-7825(02)00435-8

    Article  MATH  Google Scholar 

  30. Betsch P, Stein E (1995) An assumed strain approach avoiding artificial thickness straining for a non-linear 4-node shell element. Commun Numer Methods Eng 11:899–909. https://doi.org/10.1002/cnm.1640111104

    Article  MATH  Google Scholar 

  31. Caseiro JF, de Alves SRJ, Valente RAF (2013) A systematic development of EAS three-dimensional finite elements for the alleviation of locking phenomena. Finite Elements Anal Des 73:30–41. https://doi.org/10.1016/J.FINEL.2013.05.006

    Article  Google Scholar 

  32. Militello C, Felippa CA (1990) A variational justification of the assumed natural strain formulation of finite elements—I. Variational principles. Comput Struct 34:431–438. https://doi.org/10.1016/0045-7949(90)90267-6

    Article  MATH  Google Scholar 

  33. Hajlaoui A, Wali M, Ben JM, Dammak F (2016) An improved enhanced solid shell element for static and buckling analysis of shell structures. Mech Ind. https://doi.org/10.1051/meca/2015106

    Article  Google Scholar 

  34. Hajlaoui A, Jarraya A, El Bikri K, Dammak F (2015) Buckling analysis of functionally graded materials structures with enhanced solid-shell elements and transverse shear correction. Compos Struct 132:87–97. https://doi.org/10.1016/j.compstruct.2015.04.059

    Article  Google Scholar 

  35. Hajlaoui A, Jarraya A, Kallel-Kamoun I, Dammak F (2012) Buckling analysis of a laminated composite plate with delaminations using the enhanced assumed strain solid shell element. J Mech Sci Technol 26:3213–3221. https://doi.org/10.1007/s12206-012-0829-1

    Article  Google Scholar 

  36. Levinson M (1980) An accurate, simple theory of the statics and dynamics of elastic plates. Mech Res Commun 7:343–350. https://doi.org/10.1016/0093-6413(80)90049-X

    Article  MATH  Google Scholar 

  37. Reddy JN (1984) A simple higher-order theory for laminated composite plates. J Appl Mech 51:745–752. https://doi.org/10.1115/1.3167719

    Article  MATH  Google Scholar 

  38. Murthy VVM (1981) An improved transverse shear deformation theory for laminated anisotropic plates. NASA Tech Pap 1903:1–37

    Google Scholar 

  39. Shi G (2007) A new simple third-order shear deformation theory of plates. Int J Solids Struct 44:4399–4417. https://doi.org/10.1016/j.ijsolstr.2006.11.031

    Article  MATH  Google Scholar 

  40. Hajlaoui A, Chebbi E, Wali M, Dammak F (2020) Geometrically nonlinear analysis of FGM shells using solid-shell element with parabolic shear strain distribution. Int J Mech Mater Des 16:351–366. https://doi.org/10.1007/s10999-019-09465-x

    Article  Google Scholar 

  41. Hajlaoui A, Chebbi E, Wali M, Dammak F (2019) Static analysis of carbon nanotube-reinforced FG shells using an efficient solid-shell element with parabolic transverse shear strain. Eng Comput. https://doi.org/10.1108/ec-02-2019-0075

    Article  Google Scholar 

  42. Hajlaoui A, Chebbi E, Dammak F (2019) Buckling analysis of carbon nanotube reinforced FG shells using an efficient solid-shell element based on a modified FSDT. Thin-Walled Struct 144:106254. https://doi.org/10.1016/J.TWS.2019.106254

    Article  Google Scholar 

  43. Kiani Y, Eslami MR (2013) An exact solution for thermal buckling of annular FGM plates on an elastic medium. Compos B Eng 45:101–110. https://doi.org/10.1016/j.compositesb.2012.09.034

    Article  Google Scholar 

  44. Shen HS (2007) Thermal postbuckling of shear deformable FGM cylindrical shells with temperature-dependent properties. Mech Adv Mater Struct 14:439–452. https://doi.org/10.1080/15376490701298942

    Article  Google Scholar 

Download references

Acknowledgements

This work is carried out thanks to the support and funding allocated to the Laboratory of Electromechanical Systems (LASEM/LR99ES36) by the Tunisian Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hajlaoui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajlaoui, A., Dammak, F. A modified first shear deformation theory for three-dimensional thermal post-buckling analysis of FGM plates. Meccanica 57, 337–353 (2022). https://doi.org/10.1007/s11012-021-01427-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-021-01427-y

Keywords

Navigation