Skip to main content
Log in

Car-Borne Measurements of Atmospheric NO2 by a Compact Broadband Cavity Enhanced Absorption Spectrometer

  • Published:
Journal of Applied Spectroscopy Aims and scope

We report car-borne measurements of atmospheric NO2 close to the ground by incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS). A compact IBBCEAS spectrometer with a blue light emitting diode (LED) having a central wavelength of 458 nm, a full width at half maximum of 25 nm, and a 50-cm-long cavity was developed for mobile measurements. The NO2 detection limit of the spectrometer was calculated as 1.9 parts per billion by volume (ppbv) for a 30 s acquisition time by stabilizing the LED emitting spectrum, optimizing the NO2 reference cross sections, and by calibrating the reflectivity of the cavity mirrors. The accuracy of the spectrometer was verified by measuring NO2 samples with various mixing ratios between 1–200 ppbv, which were produced by a gas dilution system in the laboratory. Three distinct journeys in Nanjing and the surrounding areas were selected as observation routes. The atmospheric NO2 close to the ground was measured by the spectrometer from August 4 to 7, 2013. The mixing ratios of NO2 ranged from 3 to 144 ppbv. These results were compared with the column density of NO2 measured by a passive differential optical absorption spectroscopy (DOAS) instrument on the same car. Hence, we demonstrate the feasibility of using the spectrometer for car-borne measurements of atmospheric NO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Y. W. Davis, S. Baray, C. A. McLinden, A. Khanbabakhani, W. Fujs, C. Csukat, J. Debosz, and R. McLaren, Atm. Chem. Phys., 19, 13871–13889 (2019).

    Article  ADS  Google Scholar 

  2. F. C. Wu, P. H. Xie, A. Li, F. S. Mou, H. Chen, Y. Zhu, T. Zhu, J. G. Liu, and W. Q. Liu, Atm. Chem. Phys., 18, 1535–1554 (2018).

    Article  ADS  Google Scholar 

  3. A. C. Meier, A. Schonhardt, T. Bosch, A. Richter, A. Seyler, T. Ruhtz, D. E. Constantin, R. Shaiganfar, T. Wagner, A. Merlaud, M. Van Roozendael, L. Belegante, D. Nicolae, L. Georgescu, and J. P. Burrows, Atm. Meas. Tech., 10, 1831–1857 (2017).

    Article  Google Scholar 

  4. S. E. Fiedler, A. Hese, and A. A. Ruth, Chem. Phys. Lett., 371, 284–294 (2003).

    Article  ADS  Google Scholar 

  5. S. X. Liang, M. Qin, P. H. Xie, J. Duan, W. Fang, Y. B. He, J. Xu, J. W. Liu, X. Li, K. Tang, F. H. Meng, K. D. Ye, J. G. Liu, and W. Q. Liu, Atm. Meas. Tech., 12, 2499–2512 (2019).

    Article  Google Scholar 

  6. N. Jordan, C. Z. Ye, S. Ghosh, R. A. Washenfelder, S. S. Brown, and H. D. Osthoff, Atm. Meas. Tech., 12, 1277–1293 (2019).

    Article  Google Scholar 

  7. J. Duan, M. Qin, B. Ouyang, W. Fang, X. Li, K. D. Lu, K. Tang, S. X. Liang, F. H. Meng, Z. K. Hu, P. H. Xie, W. Q. Liu, and R. Haesler, Atm. Meas. Tech., 11, 4531–4543 (2018).

    Article  Google Scholar 

  8. B. Fang, W. X. Zhao, X. Z. Xu, J. C. Zhou, X. Ma, S. Wang, W. J. Zhang, D. S. Venables, and W. D. Chen, Opt. Express, 25, 26910–26922 (2017).

    Article  ADS  Google Scholar 

  9. K. E. Min, R. A. Washenfelder, W. P. Dube, A. O. Langford, P. M. Edwards, K. J. Zarzana, J. Stutz, K. Lu, F. Rohrer, Y. Zhang, and S. S. Brown, Atm. Meas. Tech., 9, 423–440 (2016).

    Article  Google Scholar 

  10. L. Y. Ling, P. H. Xie, M. Qin, W. Fang, Y. Jiang, R. Z. Hu, and N. N. Zheng, Chin. Opt. Lett., 11, 063001 (2013).

    Article  ADS  Google Scholar 

  11. T. Wu, C. Coeur-Tourneur, G. Dhont, A. Cassez, E. Fertein, X. D. He, and W. D. Chen, J. Quant. Spectrosc. Radiat. Transf., 133, 199–205 (2014).

    Article  ADS  Google Scholar 

  12. O. J. Kennedy, B. Ouyang, J. M. Langridge, M. J. S. Daniels, S. Bauguitte, R. Freshwater, M. W. McLeod, C. Ironmonger, J. Sendall, O. Norris, R. Nightingale, S. M. Ball, and R. L. Jones, Atm. Meas. Tech., 4, 1759–1776 (2011).

    Article  Google Scholar 

  13. S. X. Liang, M. Qin, J. Duan, W. Fang, A. Li, J. Xu, X. Lu, K. Tang, P. H. Xie, J. G. Liu, and W. Q. Liu, Acta Phys. Sin., 66, 090704 (2017).

    Google Scholar 

  14. Y. Nakashima and Y. Sadanaga, Anal. Sci., 33, 519–524 (2017).

    Article  Google Scholar 

  15. H. M. Yi, T. Wu, G. S. Wang, W. X. Zhao, E. Fertein, C. Coeur, X. M. Gao, W. J. Zhang, and W. D. Chen, Opt. Express, 24, A781 (2016).

    Article  ADS  Google Scholar 

  16. M. L. Dong, W. X. Zhao, Y. Cheng, C. J. Hu, X. J. Gu, and W. J. Zhang, Acta Phys. Sin., 61, 060702 (2012).

    Google Scholar 

  17. L. Y. Ling, P. H. Xie, P. P. Lin, Y. R. Huang, M. Qin, J. Duan, R. Z. Hu, and F. C. Wu, Acta Phys. Sin., 64, 130705 (2015).

    Google Scholar 

  18. T. Wu, W. Zhao, W. Chen, W. Zhang, and X. Gao, Appl. Phys. B, 94, 85–94 (2009).

    Article  ADS  Google Scholar 

  19. J. W. Liu, X. Li, Y. M. Yang, H. C. Wang, C. L. Kuang, Y. Zhu, M. D. Chen, J. L. Hu, L. M. Zeng, and Y. H. Zhang, Anal. Chem., 92, 2697–2705 (2020).

    Article  Google Scholar 

  20. W. P. Kong, T. Wu, W. Nie, Z. Xu, R. Lai, X. D. He, W. D. Chen, and Z. P. Chen, Acta Opt. Sin., 39, 023001 (2019).

    Google Scholar 

  21. C. Bahrini, A. C. Gregoire, D. Obada, C. Mun, and C. Fittschen, Opt. Laser Technol., 108, 466–479 (2018).

    Article  ADS  Google Scholar 

  22. L. S. Meng, G. X. Wang, P. Augustin, M. Fourmantin, Q. Gou, E. Fertein, T. N. Ba, C. Coeur, A. Tomas, and W. D. Chen, Opt. Lett., 45, 1611–1614 (2020).

    Article  ADS  Google Scholar 

  23. L. Y. Ling, P. H. Xie, M. Qin, N. N. Zheng, C. L. Ye, A. Li, and R. Z. Hu, Spectrosc. Spectr. Anal., 32, 2886–2890 (2012).

    Google Scholar 

  24. R. A. Washenfelder, A. O. Langford, H. Fuchs, and S. S. Brown, Atm. Chem. Phys., 8, 7779–7793 (2008).

    Article  ADS  Google Scholar 

  25. S. Shardanand and A. D. P. Rao, NASA Technical Note (1977).

    Google Scholar 

  26. M. Sneep and W. Ubachs, J. Quant. Spectrosc. Radiat. Transf., 92, 293–310 (2005).

    Article  ADS  Google Scholar 

  27. S. Voigt, J. Orphal, and J. P. Burrows, J. Photochem. Photobiol. A, 149, 1–7 (2002).

    Article  Google Scholar 

  28. G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, and A. R. Ravishankara, J. Geophys. Res., 95, 18577–18582 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Ling or Y. Huang.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 4, p. 670, July–August, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, L., Huang, Y., Li, A. et al. Car-Borne Measurements of Atmospheric NO2 by a Compact Broadband Cavity Enhanced Absorption Spectrometer. J Appl Spectrosc 88, 901–909 (2021). https://doi.org/10.1007/s10812-021-01257-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01257-6

Keywords

Navigation