Skip to main content
Log in

Simulation of Real Image Microstructural Model of Semi-solid Aluminium Alloy Using a Coupled Eulerian–Lagrangian Approach

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The main aim of this research is to simulate a compression test of semi-solid A380 aluminium alloy in numerical software. In order to achieve a more realistic model, 2D image-based modelling is used. The first step of this method is to obtain appropriate microstructural images. As the semi-solid material consists of non-dendritic solid phase and liquid channels, ECAP tool is used to apply a high plastic strain to casted samples. In order to observe desirable (non-dendritic) microstructure, microstructure image is taken from water quench ECAPed sample heated at semi-solid range. After the binarizing image data, the data are imported to appropriate software. A coupled Eulerian–Lagrangian (CEL) approach is used to obtain macro-scale mechanical behaviour. This approach is used to take advantages of both main formulations: Eulerian formulation and Lagrangian formulation. In CEL approach, material moves through an Eulerian mesh that is fixed in space while Lagrangian mesh is attached to the material points and is used to set boundary conditions. The simulations results show a strong dependence of mechanical behaviour on strain rate. This informations can be used for prediction of semi-solid forming, as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. A. Fabrizi, S. Capuzzi, A. De Mori, G. Timelli, Effect of T6 heat treatment on the microstructure and hardness of secondary AlSi9Cu3 (Fe) alloys produced by semi-solid SEED process. Metals 8, 750 (2018). https://doi.org/10.3390/met8100750

    Article  CAS  Google Scholar 

  2. Y. Birol, Cooling slope casting and thixoforming of hypereutectic A390 alloy. J. Mater. Process. Technol. 207, 200–203 (2018). https://doi.org/10.1016/j.jmatprotec.2007.12.071

    Article  CAS  Google Scholar 

  3. L.S. Rao, A.K. Jha, S.N. Ojha, Microstructure and tribological characteristics of strain-induced melt activation (SIMA)-processed Al–10Cu–Fe alloy. Int. J. Metalcast. 12(3), 523–542 (2018). https://doi.org/10.1007/s40962-017-0187-y

    Article  CAS  Google Scholar 

  4. B. Zhou, S. Lu, K. Xu, C. Xu, Z. Wang, Microstructure and simulation of semisolid aluminum alloy castings in the process of stirring integrated transfer-heat (SIT) with water cooling. Int. J. Metalcast. (2019). https://doi.org/10.1007/s40962-019-00357-6

    Article  Google Scholar 

  5. O.R.I.X. Bustos, S. Ordoñez, R. Colás, Rheological and microstructural study of A356 alloy solidified under magnetic stirring. Int. J. Metalcast. 7(1), 29–37 (2013). https://doi.org/10.1007/BF03355542

    Article  CAS  Google Scholar 

  6. M.A. Abdelgnei, M.Z. Omar, M.J. Ghazali, M.N. Mohammed, Microstructure evaluation and mechanical properties of thixoformed Ai–5.7 Si–2Cu–0.3 Mg aluminum alloys. Int. J. Metalcast. (2021). https://doi.org/10.1007/s40962-021-00610-x

    Article  Google Scholar 

  7. R. Koeune, J.P. Ponthot, iSemisolid metallic alloys constitutive modeling for the simulation of thixoforming processes, in Advanced Computational Materials Modeling: From Classical to Multi‐Scale Techniques, ed. By M. Vaz Júnior, E.A. de Souza Neto, P.A. Muñoz-Rojas (Wiley‐VCH Verlag GmbH & Co., 2011), p. 205. https://doi.org/10.1002/9783527632312

  8. B. Cai, In situ synchrotron tomographic quantification of semi-solid properties of aluminum-copper alloys. A doctoral thesis (2015)

  9. H.V. Atkinson, Modelling the semisolid processing of metallic alloys. Prog. Mater. Sci. 50(3), 341–412 (2005). https://doi.org/10.1016/j.pmatsci.2004.04.003

    Article  CAS  Google Scholar 

  10. D. Fuloria, Characterisation of semi-solid deformation behaviour of aluminium-copper alloys via combined X-ray microtomography and finite element modelling. A doctoral thesis (2009)

  11. F. Sheykh-jaberi, Exeprimental and numerical analysis of semi-solid constitutive behaviour of B206 and A356 foundry alloys. A doctoral thesis (2018)

  12. J. Wang, A.B. Phillion, G. Lu, Development of a visco-plastic constitutive modeling for thixoforming of AA6061 in semi-solid state. J. Alloys Compd. 609, 290–295 (2014). https://doi.org/10.1016/j.jallcom.2014.04.140

    Article  CAS  Google Scholar 

  13. Z. Ma, H. Zhang, W. Song, X. Wu, L. Jia, H. Zhang, Pressure-driven mold filling model of aluminum alloy melt/semi-solid slurry based on rheological behavior. J. Mater. Sci. Technol. 39, 14–21 (2020). https://doi.org/10.1016/j.jmst.2019.07.048

    Article  Google Scholar 

  14. M. Modigell, A. Pola, M. Tocci, Rheological characterization of semi-solid metals: a review. Metals 8, 245 (2018). https://doi.org/10.3390/met8040245

    Article  CAS  Google Scholar 

  15. M. Modigell, J. Koke, Time-dependent rheological properties of semi-solid metal alloys. Mech. Time Depend. Mater. 3, 15–30 (1999). https://doi.org/10.1023/A:1009856708511

    Article  CAS  Google Scholar 

  16. A.N. Alexandrou, G. Georgiou, On the early breakdown of semisolid suspensions. J. Nonnewton Fluid Mech. 142, 199–206 (2007). https://doi.org/10.1016/j.jnnfm.2006.09.003

    Article  CAS  Google Scholar 

  17. S. Simlandi, N. Barman, H. Chattopadhyay, Study on thixotropic property of A356 alloy in semi-solid state. Solid State Phenom. 192, 335–340 (2013). https://doi.org/10.4028/www.scientific.net/SSP.192-193.335

  18. W.M. Van Haaften, W.H. Kool, L. Katgerman, Tensile behaviour of semi-solid industrial aluminium alloys AA3104 and AA5182. Mater. Sci. Eng. 336, 1–6 (2002). https://doi.org/10.1016/S0921-5093(01)01987-6

    Article  Google Scholar 

  19. D. Larouche, J. Langlais, W. Wu, M. Bouchard, A constitutive model for the tensile deformation of a binary aluminum alloy at high fractions of solid. Metall. Mater. Trans. B 37, 431–443 (2006). https://doi.org/10.1007/s11663-006-0028-5

    Article  Google Scholar 

  20. D. Fabrègue, A. Deschams, M. Suéry, J.M. Drezet, Non-isothermal tensile tests during solidification of Al–Mg–Si–Cu alloys: Mechanical properties in relation to the phenomenon of hot tearing. Acta Mater. 54, 5209–5220 (2006). https://doi.org/10.1016/j.actamat.2006.06.027

    Article  CAS  Google Scholar 

  21. R. Takai, A. Matsushita, S. Yanagida, K. Nakamura, M. Yoshida, Development of an elasto-viscoplastic constitutive equation for an Al-Mg alloy undergoing a tensile test during partial solidification. Mater. Trans. 56, 1233–1241 (2015). https://doi.org/10.2320/matertrans.L-M2015815

    Article  CAS  Google Scholar 

  22. K. Traidi, V. Favier, P. Lestriez, K. Debray, L. Langlois, T. Balan, Modelling semi-solid behaviour and brittle temperature range. Solid State Phenom. 285, 361–366 (2019). https://doi.org/10.4028/www.scientific.net/SSP.285.361

  23. C.G. Kang, J.S. Choi, K. Kim, The effect of strain rate on macroscopic behavior in the compression forming of semi-solid aluminum alloy. J. Mater. Process. Technol. 88, 159–168 (1999). https://doi.org/10.1016/S0924-0136(98)00383-5

    Article  Google Scholar 

  24. C.G. Kang, H.K. Jung, Finite element analysis with deformation behavior modeling of globular microstructure in forming process of semi-solid materials. Int. J. Mech. Sci. 41, 1423–1445 (1999). https://doi.org/10.1016/S0020-7403(98)00107-6

    Article  Google Scholar 

  25. N.S. Kim, C.G. Kang, An investigation of flow characteristics considering the effect of viscosity variation in the thixoforming process. J. Mater. Process. Technol. 103, 237–246 (2000). https://doi.org/10.1016/S0924-0136(99)00441-0

    Article  Google Scholar 

  26. A.N. Alexandrou, Y. Pan, D. Apelian, G. Georgiou, Semisolid material characterization using computational rheology, in Proceedings of the Seventh International Conference on Semi-Solid Processing of Alloys and Composites Tsukuba Japan, Vol. 417 (2002)

  27. K.P. Sołek, Z. Mitura, R. Kuziak, P. Kapranos, The use of ADINA software to simulate thixocasting processes. Solid State Phenom. 116, 626–629 (2006). https://doi.org/10.4028/www.scientific.net/SSP.116-117.626

  28. K.P. Sołek, R.M. Kuziak, M. Karbowniczek, The application of thermodynamic calculations for the semi-solid processing design. Arch. Metall. Mater. 52 (2007)

  29. V. Favier, H.V. Atkinson, Micromechanical modelling of the elastic–viscoplastic response of metallic alloys under rapid compression in the semi-solid state. Acta Mater. 59, 1271–1280 (2011)

  30. J. Wang, S. Shang, G. Lu, J. Yu, Viscosity estimation of semi-solid alloys based on thermal simulation compression tests. Int. J. Mater. Res. 104, 255–259 (2013). https://doi.org/10.3139/146.110858

    Article  CAS  Google Scholar 

  31. J.J. Wang, G.M. Lu, J.G. Yu, Numerical analysis of semi-solid die-casting automobile part based on the thermo-visco-plastic constitutive relation. Adv Mat Res. 1096, 268–274 (2015). https://doi.org/10.4028/www.scientific.net/AMR.1096.268

  32. M.H. Sheikh-Ansari, M. Aghaie-Khafri, Constitutive modeling of semisolid deformation for the assessment of dilatant shear bands. Appl. Math. Model. 70, 128–138 (2019). https://doi.org/10.1016/j.apm.2019.01.028

    Article  Google Scholar 

  33. S. Gencalp, N. Saklakoglu, Semisolid microstructure evolution during cooling slope casting under vibration of A380 aluminum alloy. Mater. Manuf. Process. 25, 943–947 (2010). https://doi.org/10.1080/10426911003636944

    Article  CAS  Google Scholar 

  34. G.R. HirtKopp, Kopp R (2009) Thixoforming: Semi-Solid Metal Processing (Wiley, Hoboken, 2009)

    Google Scholar 

  35. A. Matsushita, H. Mizuno, T. Okane, M. Yoshida, Image-based modeling of viscoelastic properties of solidifying Al alloys and model validation. J. Mater. Process. Technol. 263, 321–329 (2019). https://doi.org/10.1016/j.jmatprotec.2018.08.012

    Article  CAS  Google Scholar 

  36. C.G. Kang, H.K. Jung, A study on solutions for avoiding liquid segregation phenomena in thixoforming process: Part I Constitutive modeling and finite element method simulations for die design. Metall. Mater. Trans. B 32, 119–127 (2001)

    Article  Google Scholar 

  37. A. Neag, V. Favier, R. Bigot, T. Canta, D. Frunza, Experimental investigation and numerical simulation during backward extrusion of a semi-solid Al-Si hypoeutectic alloy. AIP Conf. Proc. 907, 620–628 (2007). https://doi.org/10.1063/1.2729582

    Article  CAS  Google Scholar 

  38. V. Favier, H. Atikson, Analysis of semi-solid response under rapid comrpession tests using multi-scale modelling and epxperiments. Trans. Nonferrous Met. Soc. China 20, 1691–1695 (2010). https://doi.org/10.1016/S1003-6326(09)60359-9

    Article  CAS  Google Scholar 

  39. F. Sheykh-jaberi, S.L. Cockcroft, D.M. Maijer, A.B. Phillion, Meso-scale modelling of semi-solid deformation in aluminum foundry alloys: Effects of feeding and microstructure on hot tearing susceptibility. J. Mater. Process. Technol. 279, 116551 (2020). https://doi.org/10.1016/j.jmatprotec.2019.116551

    Article  CAS  Google Scholar 

  40. Z. Sun, M. Bernacki, R. Logé, G. Gu, Numerical simulation of mechanical deformation of semi-solid material using a level-set based finite element method. Model. Simul. Mater. Sci. Eng. 25, 065020 (2017). https://doi.org/10.1088/1361-651X/aa788e

    Article  Google Scholar 

  41. A.B. Phillion, S.L. Cockcroft, P.D. Lee, A three-phase simulation of the effect of microstructural features on semi-solid tensile deformation. Acta Mater. 56, 4328–4338 (2008). https://doi.org/10.1016/j.actamat.2008.04.055

    Article  CAS  Google Scholar 

  42. H. Sharifi, D. Larouche, An automatic granular structure generation and finite element analysis of heterogeneous semi-solid materials. Model. Simul. Mater. Sci. Eng. 23, 065013 (2015). https://doi.org/10.1088/0965-0393/23/6/065013

    Article  CAS  Google Scholar 

  43. A. Matsushita, Measurement of the mechanical properties and construction of the visco-elastic constitutive equation of the partially solidified alloy for predicting hot tearing. A doctoral thesis (2017)

  44. Abaqus Analysis User’s Manual; Dassault Systemes, Providence (RI, USA, 2013)

    Google Scholar 

  45. D.J. Benson, Computational methods in Lagrangian and Eulerian hydrocodes. Comput. Methods Appl. Mech. Eng. 99, 235–394 (1992). https://doi.org/10.1016/0045-7825(92)90042-I

    Article  Google Scholar 

  46. M. Bakroon, R. Daryaei, D. Aubram, F. Rackwitz, Multi-material arbitrary Lagrangian–Eulerian and coupled Eulerian–Lagrangian methods for large deformation geotechnical problems. Numer. Method. Geotech. Eng. 8 (2018)

  47. K.N. Campo, E.J. Zoqui, Thixoforming of an ECAPed aluminum A356 alloy: Microstructure evolution, rheological behavior, and mechanical properties. Metall. Mater. Trans. A, 47, 1792–1802. https://doi.org/10.1007/s11661-016-3339-4

  48. L.V. Torres, L.F. Torres, E.J. Zoqui, Electromagnetic stirring versus ECAP: morphological comparison of Al-Si-Cu alloys to make the microstructural refinement for use in SSM processing. Adv. Mater. Sci. Eng. 2016 (2016). https://doi.org/10.1155/2016/9789061

  49. C.T.W. Proni, L.V. Torres, R. Haghayeghi, E.J. Zoqui, ECAP: an alternative route for producing AlSiCu for use in SSM processing. Mater. Charact. 118, 252–262 (2016). https://doi.org/10.1016/j.matchar.2016.06.002

    Article  CAS  Google Scholar 

  50. Y. Birol, Semisolid processing of near-eutectic and hypereutectic Al–Si–Cu alloys. J. Mater. Sci. 43, 3577–3581 (2008). https://doi.org/10.1007/s10853-008-2565-6

    Article  CAS  Google Scholar 

  51. European Steel and Alloy Grades; Grade ENAC-AlSi10Mg(Fe)

  52. T. Magnusson, L. Arnberg, Density and solidification shrinkage of hypoeutectic aluminum-silicon alloys. Metall. Mater. Trans. A 32, 2605–2613 (2001). https://doi.org/10.1007/s11661-001-0050-9

    Article  Google Scholar 

  53. A. B. Phillion, Hot tearing and constitutive behaviour of semi-solid aluminum alloys. A doctoral thesis (2007)

  54. D. Fuloria, P.D. Lee, An X-ray microtomographic and finite element modeling approach for the prediction of semi-solid deformation behaviour in Al–Cu alloys. Acta Mater. 57, 5554–5562. https://doi.org/10.1016/j.actamat.2009.07.051

  55. M. Ferrante, E.R. De Freitas, Rheological behaviour and deformation characteristics of a commercial and a laboratory-cast Al-4% Cu alloy in the semi-solid state. Acta Mater. 49, 3839–3847 (2001). https://doi.org/10.1016/S1359-6454(01)00239-7

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the company AD Plastik from Split, Croatia for providing them with numerical software.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

ID contributed to the study conception and design. Modelling in the software was performed by SJ, DB and ID. ID performed the simulations. The first draft of the manuscript was written by ID. All authors peer reviewed paper writing and editing. All authors reviewed the final manuscript.

Corresponding author

Correspondence to Ivana Dumanić.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumanić, I., Jozić, S. & Bajić, D. Simulation of Real Image Microstructural Model of Semi-solid Aluminium Alloy Using a Coupled Eulerian–Lagrangian Approach. Inter Metalcast 16, 1292–1302 (2022). https://doi.org/10.1007/s40962-021-00689-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00689-2

Keywords

Navigation