Skip to main content
Log in

Optimization of the Structure of a Heterogeneous Scintillator for Registration of Thermal Neutrons

  • NUCLEAR EXPERIMENTAL TECHNIQUE
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The results of modeling and optimization of a composite scintillator for recording thermal neutrons are presented. The interaction of thermal neutrons and γ-quanta with composites consisting of fragments of a glass scintillator containing 6Li was observed. The aim of the research was to determine the structure of a composite with high sensitivity to thermal neutrons and to provide effective suppression of signals from γ‑quanta. During the simulation, the optimal structural parameters of the composite were determined, such as the size of the fragments and the concentration of glass. According to the presented simulation results, optimized composites under thermal neutron irradiation can provide a neutron detection efficiency of at least 50% with a sensitivity to γ-quanta at the level η < 10–6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Kuzmin, E.S., Bokuchava, G.D., Zimin, I.Yu., Kruglov, A.A., Kuchinskiy, N.A., and Malyshev, V.L., Instrum. Exp. Tech., 2021, vol. 64, no. 2, p. 195. https://doi.org/10.1134/S0020441221010279

    Article  Google Scholar 

  2. Favalli, A., Iliev, M.L., Chung, K., Hurlbut, C., Martinez, H.P., Swinhoe, M.T., Zaitseva, N.P., and Ianakiev, K.D., IEEE Trans. Nucl. Sci., 2013, vol. 60, p. 1053. https://doi.org/10.1109/TNS.2013.2251900

    Article  ADS  Google Scholar 

  3. Ziegler, J.F., Ziegler, M., and Biersack, J., Nucl. Instrum. Methods Phys. Res., Sect. B, 2010, vol. 268, p. 1818. https://doi.org/10.1016/j.nimb.2010.02.091

    Article  Google Scholar 

  4. Ianakiev, K.D., Hehlen, M.P., Swinhoe, M.T., Favalli, A., Iliev, M.L., Lin, T.C., Bennett, B.L., and Barker, M.T., Nucl. Instrum. Methods Phys. Res., Sect. A, 2015, vol. 784, p. 189. https://doi.org/10.1016/j.nima.2014.10.073

    Article  Google Scholar 

  5. Rich, G.C., Kazkaz, K., Martinez, H.P., and Gushue, T., Nucl. Instrum. Methods Phys. Res., Sect. A, 2015, vol. 794, p. 15. https://doi.org/10.1016/j.nima.2015.05.004

    Article  Google Scholar 

  6. Mayer, M.F., Nattress, J., Trivelpiece, C., and Jovanovic, I., Nucl. Instrum. Methods Phys. Res., Sect. A, 2015, vol. 784, p. 168. https://doi.org/10.1016/j.nima.2014.09.023

    Article  Google Scholar 

  7. Kazkaz, K., Bowden, N.S., and Pedretti, M., IEEE Trans. Nucl. Sci., 2013, vol. 60, p. 1416. https://doi.org/10.1109/TNS.2013.2249528

    Article  ADS  Google Scholar 

  8. Shi, T., Nattress, J., Mayer, M., Lin, M.W., and Jovanovic, I., Nucl. Instrum. Methods Phys. Res., Sect. A, 2016, vol. 839, p. 86. https://doi.org/10.1016/j.nima.2016.09.041

    Article  Google Scholar 

  9. Mayer, M., Nattress, J., Kukharev, V., Foster, A., Meddeb, A., Trivelpiece, C., Ounaies, Z., and Jovanovic, I., Nucl. Instrum. Methods Phys. Res., Sect. A, 2015, vol. 785, p. 117. https://doi.org/10.1016/j.nima.2015.03.014

    Article  Google Scholar 

  10. Chernukhin, Y.I., Yudov, A.A., and Streltsov, S.I., Nucl. Energy Technol., 2015, vol. 1, p. 130. https://doi.org/10.1016/j.nucet.2016.01.005

    Article  Google Scholar 

  11. Foster, A., Meddeb, A., Wilhelm, K., Nattress, J., Ounaies, Z., and Jovanovic, I., Nucl. Instrum. Methods Phys. Res., Sect. A, 2018, vol. 905, p. 29. https://doi.org/10.1016/J.NIMA.2018.07.018

    Article  Google Scholar 

  12. Wiggins, B.W., Favalli, A., Iliev, M.L., Ianakiev, K.D., and Hehlen, M.P., Nucl. Instrum. Methods Phys. Res., Sect. A, 2019, vol. 915, p. 17. https://doi.org/10.1016/j.nima.2018.10.165

    Article  Google Scholar 

  13. Geant4. A Simulation Toolkit. https://geant4.web.cern.ch/support/download.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Kuzmin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmin, E.S., Zimin, I.Y. Optimization of the Structure of a Heterogeneous Scintillator for Registration of Thermal Neutrons. Instrum Exp Tech 64, 657–662 (2021). https://doi.org/10.1134/S0020441221050201

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441221050201

Navigation