Skip to main content

Advertisement

Log in

The genetics of cardiac amyloidosis

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Heritable cardiac amyloidosis (CA) is an underrecognized cause of morbidity and mortality in the USA. It results from the accumulation of the misfolded protein transthyretin within the myocardium, resulting in amyloid transthyretin-associated cardiomyopathy (ATTR-CM). Over 150 different pathologic point mutations within the transthyretin gene have been identified, each carrying variable clinical phenotypes and penetrance. In the USA, the most common cause of hereditary ATTR is the Val122Ile point mutation, with a prevalence of 3.4–4.0% in North Americans of African and Caribbean descent. Among Caucasians with hereditary ATTR-CM, the V30M mutation is the most commonly identified variant. Overall, the incidence of ATTR disease in the USA has been increasing, likely due to an increase in practitioner awareness, utilization of new non-invasive imaging technologies for ATTR diagnosis, and the growth of multidisciplinary amyloid programs across the country. Yet significant numbers of patients with evidence of left ventricular thickening on cardiac imaging, senile aortic stenosis, and/or symptoms of heart failure with preserved ejection fraction likely have undiagnosed CA, especially within the African American population. With the emergence of new disease-modifying therapies for ATTR, recognition and the prompt diagnosis of CA is important for patients and their potentially affected progeny. Herein, we review the genetics of heritable CA as well as the importance of genetic counseling and testing for patients and their families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and material

Not applicable.

Data Availability

Not applicable.

References

  1. Stangou AJ, Banner NR, Hendry BM et al (2010) Hereditary fibrinogen A alpha-chain amyloidosis: phenotypic characterization of a systemic disease and the role of liver transplantation. Blood 115(15):2998–3007. https://doi.org/10.1182/blood-2009-06-223792

    Article  CAS  PubMed  Google Scholar 

  2. Coriu D, Dispenzieri A, Stevens FJ et al (2003) Hepatic amyloidosis resulting from deposition of the apolipoprotein A-I variant Leu75Pro. Amyloid Int J Exp Clin Investig Off J Int Soc Amyloidosis 10(4):215–223. https://doi.org/10.3109/13506120309041738

    Article  CAS  Google Scholar 

  3. Morizane R, Monkawa T, Konishi K et al (2011) Renal amyloidosis caused by apolipoprotein A-II without a genetic mutation in the coding sequence. Clin Exp Nephrol 15(5):774–779. https://doi.org/10.1007/s10157-011-0483-4

    Article  CAS  PubMed  Google Scholar 

  4. Schmidt E-K, Mustonen T, Kiuru-Enari S, Kivelä TT, Atula S (2020) Finnish gelsolin amyloidosis causes significant disease burden but does not affect survival: FIN-GAR phase II study. Orphanet J Rare Dis 15(1):19. https://doi.org/10.1186/s13023-020-1300-5

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mejia-Vilet JM, Cárdenas-Mastrascusa LR, Palacios-Cebreros EJ et al (2019) LECT2 amyloidosis in kidney transplantation: a report of 5 Cases. Am J Kidney Dis Off J Natl Kidney Found 74(4):563–566. https://doi.org/10.1053/j.ajkd.2018.10.016

    Article  CAS  Google Scholar 

  6. Wei LH, Walker LC, Levy E, Cystatin C (1996) Icelandic-like mutation in an animal model of cerebrovascular beta-amyloidosis. Stroke 27(11):2080–2085. https://doi.org/10.1161/01.str.27.11.2080

  7. Ravichandran S, Lachmann HJ, Wechalekar AD (2020) Epidemiologic and survival trends in amyloidosis, 1987–2019. N Engl J Med 382(16):1567–1568. https://doi.org/10.1056/NEJMc1917321

    Article  PubMed  Google Scholar 

  8. Picken MM (2015) Proteomics and mass spectrometry in the diagnosis of renal amyloidosis. Clin Kidney J 8(6):665–672. https://doi.org/10.1093/ckj/sfv087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Landrum MJ, Lee JM, Benson M et al (2018) ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res 46(D1):D1062–D1067. https://doi.org/10.1093/nar/gkx1153

    Article  CAS  PubMed  Google Scholar 

  10. Koike H, Katsuno M (2019) Ultrastructure in transthyretin amyloidosis: from pathophysiology to therapeutic insights. Biomedicines 7(1). https://doi.org/10.3390/biomedicines7010011

  11. Yee AW, Aldeghi M, Blakeley MP et al (2019) A molecular mechanism for transthyretin amyloidogenesis. Nat Commun 10(1):925. https://doi.org/10.1038/s41467-019-08609-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ruberg FL, Berk JL (2012) Transthyretin (TTR) cardiac amyloidosis. Circulation 126(10):1286–1300. https://doi.org/10.1161/CIRCULATIONAHA.111.078915

    Article  PubMed  PubMed Central  Google Scholar 

  13. Maurer MS, Hanna M, Grogan M et al (2016) Genotype and phenotype of transthyretin cardiac amyloidosis: THAOS (transthyretin amyloid outcome survey). J Am Coll Cardiol 68(2):161–172. https://doi.org/10.1016/j.jacc.2016.03.596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yoshioka A, Yamaya Y, Saiki S et al (2001) A case of familial amyloid polyneuropathy homozygous for the transthyretin Val30Met gene with motor-dominant sensorimotor polyneuropathy and unusual sural nerve pathological findings. Arch Neurol 58(11):1914–1918. https://doi.org/10.1001/archneur.58.11.1914

    Article  CAS  PubMed  Google Scholar 

  15. da Silva-Batista JA, Marques W, Oliveira MT de JS et al (2020) Presence of val30Met and val122ile mutations in a patient with hereditary amyloidosis. J Hum Genet 65(8):711–713. https://doi.org/10.1038/s10038-020-0749-3

  16. Shah KB, Mankad AK, Castano A et al (2016) Transthyretin cardiac amyloidosis in black Americans. Circ Heart Fail 9(6):e002558. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Swiecicki PL, Zhen DB, Mauermann ML et al (2015) Hereditary ATTR amyloidosis: a single-institution experience with 266 patients. Amyloid Int J Exp Clin Investig Off J Int Soc Amyloidosis 22(2):123–131. https://doi.org/10.3109/13506129.2015.1019610

    Article  CAS  Google Scholar 

  18. Quarta CC, Buxbaum JN, Shah AM et al (2015) The amyloidogenic V122I transthyretin variant in elderly black Americans. N Engl J Med 372(1):21–29. https://doi.org/10.1056/NEJMoa1404852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Buxbaum J, Alexander A, Koziol J, Tagoe C, Fox E, Kitzman D (2010) Significance of the amyloidogenic transthyretin Val 122 Ile allele in African Americans in the Arteriosclerosis Risk in Communities (ARIC) and Cardiovascular Health (CHS) Studies. Am Heart J 159(5):864–870. https://doi.org/10.1016/j.ahj.2010.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jacobson DR, Pastore R, Pool S et al (1996) Revised transthyretin Ile 122 allele frequency in African-Americans. Hum Genet 98(2):236–238. https://doi.org/10.1007/s004390050199

    Article  CAS  PubMed  Google Scholar 

  21. Alexander KM, Orav J, Singh A et al (2018) Geographic disparities in reported US amyloidosis mortality from 1979 to 2015: potential underdetection of cardiac amyloidosis. JAMA Cardiol 3(9):865–870. https://doi.org/10.1001/jamacardio.2018.2093

    Article  PubMed  PubMed Central  Google Scholar 

  22. Maurer MS, Bokhari S, Damy T et al (2019) Expert consensus recommendations for the suspicion and diagnosis of transthyretin cardiac amyloidosis. Circ Heart Fail 12(9):e006075. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006075

    Article  PubMed  PubMed Central  Google Scholar 

  23. Singh A, Geller HI, Falk RH (2017) Val122Ile mt-ATTR has a worse survival than wt-ATTR cardiac amyloidosis. J Am Coll Cardiol 69(6):757–758. https://doi.org/10.1016/j.jacc.2016.09.987

    Article  CAS  PubMed  Google Scholar 

  24. Damrauer SM, Chaudhary K, Cho JH et al (2019) Association of the V122I hereditary transthyretin amyloidosis genetic variant with heart failure among individuals of African or Hispanic/Latino ancestry. JAMA 322(22):2191–2202. https://doi.org/10.1001/jama.2019.17935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jacobson D, Tagoe C, Schwartzbard A, Shah A, Koziol J, Buxbaum J (2011) Relation of clinical, echocardiographic and electrocardiographic features of cardiac amyloidosis to the presence of the transthyretin V122I allele in older African-American men. Am J Cardiol 108(3):440–444. https://doi.org/10.1016/j.amjcard.2011.03.069

    Article  CAS  PubMed  Google Scholar 

  26. Milandri A, Farioli A, Gagliardi C et al (2020) Carpal tunnel syndrome in cardiac amyloidosis: implications for early diagnosis and prognostic role across the spectrum of aetiologies. Eur J Heart Fail 22(3):507–515. https://doi.org/10.1002/ejhf.1742

    Article  CAS  PubMed  Google Scholar 

  27. Fosbøl EL, Rørth R, Leicht BP et al (2019) Association of carpal tunnel syndrome with amyloidosis, heart failure, and adverse cardiovascular outcomes. J Am Coll Cardiol 74(1):15–23. https://doi.org/10.1016/j.jacc.2019.04.054

    Article  PubMed  Google Scholar 

  28. Sperry BW, Reyes BA, Ikram A et al (2018) Tenosynovial and cardiac amyloidosis in patients undergoing carpal tunnel release. J Am Coll Cardiol 72(17):2040–2050. https://doi.org/10.1016/j.jacc.2018.07.092

    Article  PubMed  Google Scholar 

  29. Van Dyke M, Greer S, Odom E et al (2018) Heart disease death rates among blacks and whites aged ≥35 years - United States, 1968–2015. Morb Mortal Wkly Rep Surveill Summ Wash DC 2002 67(5):1–11. https://doi.org/10.15585/mmwr.ss6705a1

  30. Sattianayagam PT, Hahn AF, Whelan CJ et al (2012) Cardiac phenotype and clinical outcome of familial amyloid polyneuropathy associated with transthyretin alanine 60 variant. Eur Heart J 33(9):1120–1127. https://doi.org/10.1093/eurheartj/ehr383

    Article  CAS  PubMed  Google Scholar 

  31. Reilly MM, Staunton H, Harding AE (1995) Familial amyloid polyneuropathy (TTR ala 60) in north west Ireland: a clinical, genetic, and epidemiological study. J Neurol Neurosurg Psychiatry 59(1):45–49. https://doi.org/10.1136/jnnp.59.1.45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Benson MD, Wallace MR, Tejada E, Baumann H, Page B (1987) Hereditary amyloidosis: description of a new American kindred with late onset cardiomyopathy. Appalachian amyloid Arthritis Rheum 30(2):195–200. https://doi.org/10.1002/art.1780300210

    Article  CAS  PubMed  Google Scholar 

  33. Koeppen AH, Mitzen EJ, Hans MB, Peng SK, Bailey RO (1985) Familial amyloid polyneuropathy. Muscle Nerve 8(9):733–749. https://doi.org/10.1002/mus.880080902

    Article  CAS  PubMed  Google Scholar 

  34. Rudolph T, Kurz MW, Farbu E (2008) Late-onset familial amyloid polyneuropathy (FAP) Val30Met without family history. Clin Med Res 6(2):80–82. https://doi.org/10.3121/cmr.2008.794

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kotani N, Hattori T, Yamagata S et al (2002) Transthyretin Thr60Ala Appalachian-type mutation in a Japanese family with familial amyloidotic polyneuropathy. Amyloid Int J Exp Clin Investig Off J Int Soc Amyloidosis 9(1):31–34. https://doi.org/10.3109/13506120209072442

    Article  CAS  Google Scholar 

  36. Araki S (1984) Type I familial amyloidotic polyneuropathy (Japanese type). Brain Dev 6(2):128–133. https://doi.org/10.1016/s0387-7604(84)80061-3

    Article  CAS  PubMed  Google Scholar 

  37. Bulawa CE, Connelly S, Devit M et al (2012) Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc Natl Acad Sci U S A 109(24):9629–9634. https://doi.org/10.1073/pnas.1121005109

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sekijima Y, Ueda M, Koike H, Misawa S, Ishii T, Ando Y (2018) Diagnosis and management of transthyretin familial amyloid polyneuropathy in Japan: red-flag symptom clusters and treatment algorithm. Orphanet J Rare Dis 13(1):6. https://doi.org/10.1186/s13023-017-0726-x

    Article  PubMed  PubMed Central  Google Scholar 

  39. Coelho T, Sousa A, Lourenço E, Ramalheira J (1994) A study of 159 Portuguese patients with familial amyloidotic polyneuropathy (FAP) whose parents were both unaffected. J Med Genet 31(4):293–299. https://doi.org/10.1136/jmg.31.4.293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hellman U, Alarcon F, Lundgren H-E, Suhr OB, Bonaiti-Pellié C, Planté-Bordeneuve V (2008) Heterogeneity of penetrance in familial amyloid polyneuropathy, ATTR Val30Met, in the Swedish population. Amyloid Int J Exp Clin Investig Off J Int Soc Amyloidosis 15(3):181–186. https://doi.org/10.1080/13506120802193720

    Article  CAS  Google Scholar 

  41. Sousa A, Coelho T, Barros J, Sequeiros J (1995) Genetic epidemiology of familial amyloidotic polyneuropathy (FAP)-type I in Póvoa do Varzim and Vila do Conde (north of Portugal). Am J Med Genet 60(6):512–521. https://doi.org/10.1002/ajmg.1320600606

    Article  CAS  PubMed  Google Scholar 

  42. Coelho T, Inês M, Conceição I, Soares M, de Carvalho M, Costa J (2018) Natural history and survival in stage 1 Val30Met transthyretin familial amyloid polyneuropathy. Neurology 91(21):e1999–e2009. https://doi.org/10.1212/WNL.0000000000006543

    Article  CAS  PubMed  Google Scholar 

  43. Suhr OB, Lindqvist P, Olofsson B-O, Waldenström A, Backman C (2006) Myocardial hypertrophy and function are related to age at onset in familial amyloidotic polyneuropathy. Amyloid Int J Exp Clin Investig Off J Int Soc Amyloidosis 13(3):154–159. https://doi.org/10.1080/13506120600876849

    Article  Google Scholar 

  44. Parman Y, Adams D, Obici L et al (2016) Sixty years of transthyretin familial amyloid polyneuropathy (TTR-FAP) in Europe: where are we now? A European network approach to defining the epidemiology and management patterns for TTR-FAP. Curr Opin Neurol 29(Suppl 1):S3–S13. https://doi.org/10.1097/WCO.0000000000000288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lemos C, Coelho T, Alves-Ferreira M et al (2014) Overcoming artefact: anticipation in 284 Portuguese kindreds with familial amyloid polyneuropathy (FAP) ATTRV30M. J Neurol Neurosurg Psychiatry 85(3):326–330. https://doi.org/10.1136/jnnp-2013-305383

    Article  PubMed  Google Scholar 

  46. Misu K, Hattori N, Ando Y, Ikeda S, Sobue G (2000) Anticipation in early- but not late-onset familial amyloid polyneuropathy (TTR met 30) in Japan. Neurology 55(3):451–452. https://doi.org/10.1212/wnl.55.3.451-a

    Article  CAS  PubMed  Google Scholar 

  47. Cisneros-Barroso E, González-Moreno J, Rodríguez A et al (2020) Anticipation on age at onset in kindreds with hereditary ATTRV30M amyloidosis from the Majorcan cluster. Amyloid Int J Exp Clin Investig Off J Int Soc Amyloidosis 27(4):254–258. https://doi.org/10.1080/13506129.2020.1789580

    Article  CAS  Google Scholar 

  48. Soares M, Buxbaum J, Sirugo G et al (1999) Genetic anticipation in Portuguese kindreds with familial amyloidotic polyneuropathy is unlikely to be caused by triplet repeat expansions. Hum Genet 104(6):480–485. https://doi.org/10.1007/s004390050991

    Article  CAS  PubMed  Google Scholar 

  49. Yamamoto K, Ikeda S, Hanyu N, Takeda S, Yanagisawa N (1998) A pedigree analysis with minimised ascertainment bias shows anticipation in Met30-transthyretin related familial amyloid polyneuropathy. J Med Genet 35(1):23–30. https://doi.org/10.1136/jmg.35.1.23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Olsson M, Hellman U, Planté-Bordeneuve V, Jonasson J, Lång K, Suhr OB (2009) Mitochondrial haplogroup is associated with the phenotype of familial amyloidosis with polyneuropathy in Swedish and French patients. Clin Genet 75(2):163–168. https://doi.org/10.1111/j.1399-0004.2008.01097.x

    Article  CAS  PubMed  Google Scholar 

  51. Santos D, Coelho T, Alves-Ferreira M et al (2015) The hidden story behind gender differences in familial amyloid polyneuropathy (FAP) ATTRV30M. Orphanet J Rare Dis 10(Suppl 1):O4. https://doi.org/10.1186/1750-1172-10-S1-O4

    Article  PubMed Central  Google Scholar 

  52. Movassagh M, Choy M-K, Knowles DA et al (2011) Distinct epigenomic features in end-stage failing human hearts. Circulation 124(22):2411–2422. https://doi.org/10.1161/CIRCULATIONAHA.111.040071

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kim SY, Morales CR, Gillette TG, Hill JA (2016) Epigenetic regulation in heart failure. Curr Opin Cardiol 31(3):255–265. https://doi.org/10.1097/HCO.0000000000000276

    Article  PubMed  PubMed Central  Google Scholar 

  54. Holmgren G, Wikström L, Lundgren H-E, Suhr OB (2004) Discordant penetrance of the trait for familial amyloidotic polyneuropathy in two pairs of monozygotic twins. J Intern Med 256(5):453–456. https://doi.org/10.1111/j.1365-2796.2004.01399.x

    Article  CAS  PubMed  Google Scholar 

  55. Saporta MA da C, Plante-Bordeneuve V, Misrahi M, Cruz MW (2009) Discordant expression of familial amyloid polyneuropathy in monozygotic Brazilian twins. Amyloid Int J Exp Clin Investig Off J Int SocAmyloidosis 16(1):38–41. https://doi.org/10.1080/13506120802676955

  56. De Lillo A, Pathak GA, De Angelis F et al (2020) Epigenetic profiling of Italian patients identified methylation sites associated with hereditary transthyretin amyloidosis. Clin Epigenetics 12(1):176. https://doi.org/10.1186/s13148-020-00967-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pathak GA, Wendt FR, De Lillo A et al (2021) Epigenomic profiles of African-American Transthyretin Val122Ile carriers reveals putatively dysregulated amyloid mechanisms. Circ Genomic Precis Med 14(1):e003011. https://doi.org/10.1161/CIRCGEN.120.003011

    Article  CAS  Google Scholar 

  58. Pepin ME, Ha C-M, Crossman DK et al (2019) Genome-wide DNA methylation encodes cardiac transcriptional reprogramming in human ischemic heart failure. Lab Investig J Tech Methods Pathol 99(3):371–386. https://doi.org/10.1038/s41374-018-0104-x

    Article  CAS  Google Scholar 

  59. Gilsbach R, Schwaderer M, Preissl S et al (2018) Distinct epigenetic programs regulate cardiac myocyte development and disease in the human heart in vivo. Nat Commun 9(1):391. https://doi.org/10.1038/s41467-017-02762-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lee MP, Glynn RJ, Schneeweiss S et al (2020) Risk factors for heart failure with preserved or reduced ejection fraction among medicare beneficiaries: application of competing risks analysis and gradient boosted model. Clin Epidemiol 12:607–616. https://doi.org/10.2147/CLEP.S253612

    Article  PubMed  PubMed Central  Google Scholar 

  61. Andersson C, Lyass A, Xanthakis V et al (2019) Risk factor-based subphenotyping of heart failure in the community. PLoS ONE 14(10):e0222886. https://doi.org/10.1371/journal.pone.0222886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Peters MJ, Joehanes R, Pilling LC et al (2015) The transcriptional landscape of age in human peripheral blood. Nat Commun 6:8570. https://doi.org/10.1038/ncomms9570

    Article  CAS  PubMed  Google Scholar 

  63. Cavalli G, Heard E (2019) Advances in epigenetics link genetics to the environment and disease. Nature 571(7766):489–499. https://doi.org/10.1038/s41586-019-1411-0

    Article  CAS  PubMed  Google Scholar 

  64. Kivipelto M, Helkala EL, Laakso MP et al (2001) Midlife vascular risk factors and Alzheimer’s disease in later life: longitudinal, population based study. BMJ 322(7300):1447–1451. https://doi.org/10.1136/bmj.322.7300.1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054):184–185. https://doi.org/10.1126/science.1566067

    Article  CAS  PubMed  Google Scholar 

  66. Cataldo JK, Prochaska JJ, Glantz SA (2010) Cigarette smoking is a risk factor for Alzheimer’s disease: an analysis controlling for tobacco industry affiliation. J Alzheimers Dis JAD 19(2):465–480. https://doi.org/10.3233/JAD-2010-1240

    Article  PubMed  Google Scholar 

  67. Holmgren G, Hellman U, Lundgren H-E, Sandgren O, Suhr OB (2005) Impact of homozygosity for an amyloidogenic transthyretin mutation on phenotype and long term outcome. J Med Genet 42(12):953–956. https://doi.org/10.1136/jmg.2005.033720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Reddi HV, Jenkins S, Theis J et al (2014) Homozygosity for the V122I mutation in transthyretin is associated with earlier onset of cardiac amyloidosis in the African American population in the seventh decade of life. J Mol Diagn JMD 16(1):68–74. https://doi.org/10.1016/j.jmoldx.2013.08.001

    Article  CAS  PubMed  Google Scholar 

  69. Klimtchuk ES, Prokaeva T, Frame NM et al (2018) Unusual duplication mutation in a surface loop of human transthyretin leads to an aggressive drug-resistant amyloid disease. Proc Natl Acad Sci 115(28):E6428–E6436. https://doi.org/10.1073/pnas.1802977115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Elliott AM, Friedman JM (2018) The importance of genetic counselling in genome-wide sequencing. Nat Rev Genet 19(12):735–736. https://doi.org/10.1038/s41576-018-0057-3

    Article  CAS  PubMed  Google Scholar 

  71. Middleton A, Mendes Á, Benjamin CM, Howard HC (2017) Direct-to-consumer genetic testing: where and how does genetic counseling fit? Pers Med 14(3):249–257. https://doi.org/10.2217/pme-2017-0001

    Article  CAS  Google Scholar 

  72. Lodder LN, Frets PG, Trijsburg RW et al (1999) Presymptomatic testing for BRCA1 and BRCA2: how distressing are the pre-test weeks? Rotterdam/Leiden Genetics Working Group. J Med Genet 36(12):906–913

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Oliveri S, Ferrari F, Manfrinati A, Pravettoni G (2018) A systematic review of the psychological implications of genetic testing: a comparative analysis among cardiovascular, Neurodegenerative and Cancer Diseases. Front Genet 9. https://doi.org/10.3389/fgene.2018.00624

  74. Hercher L, Jamal L (2016) An old problem in a new age: revisiting the clinical dilemma of misattributed paternity. Appl Transl Genomics 8:36–39. https://doi.org/10.1016/j.atg.2016.01.004

    Article  Google Scholar 

  75. Kapoor M, Rossor AM, Laura M, Reilly MM (2019) clinical presentation, diagnosis and treatment of TTR amyloidosis. J Neuromuscul Dis 6(2):189–199. https://doi.org/10.3233/JND-180371

  76. Luigetti M, Romano A, Di Paolantonio A, Bisogni G, Sabatelli M (2020) Diagnosis and treatment of hereditary transthyretin amyloidosis (hATTR) polyneuropathy: current perspectives on improving patient care. Ther Clin Risk Manag 16:109–123. https://doi.org/10.2147/TCRM.S219979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Porcari A, Merlo M, Rapezzi C, Sinagra G (2020) Transthyretin amyloid cardiomyopathy: An uncharted territory awaiting discovery. Eur J Intern Med 82:7–15. https://doi.org/10.1016/j.ejim.2020.09.025

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Each author contributed significantly to justify authorship. Dr. Cowger, a senior writer, was involved with outline of paper concept, reference review, and manuscript editing. Dr. Arno was involved with writing paper, reference review, and manuscript editing.

Corresponding author

Correspondence to Jennifer Cowger.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The authors here transfer all copyright ownership of the manuscript to Heart Failure Reviews in the event the work is published. The authors warrant that the article is original, does not infringe upon any copyright or other proprietary right of any third party, is not under consideration by another journal, and has not been previously published.

Conflict of interest

Cowger is a consultant for Abbott (Abbott Parkway, IL), Medtronic (Minneapolis, MN), and Procyrion (Houston, Texas). There is no payment related to this paper herein; Arno has no disclosures.

Additional declarations for articles in life science journals that report the results of studies involving humans and/or animals

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arno, S., Cowger, J. The genetics of cardiac amyloidosis. Heart Fail Rev 27, 1485–1492 (2022). https://doi.org/10.1007/s10741-021-10164-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-021-10164-z

Navigation