Skip to main content
Log in

Virtual elements for sound propagation in complex poroelastic media

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We develop a novel Virtual Element Method (VEM) to resolve the mixed Biot displacement-pressure formulation governing wave propagation in porous media. Within this setting, the weak form of the governing equations is discretized using implicitly defined canonical basis functions and the resulting integral forms are computed using appropriate polynomial projections. The projection operator accounting for the solid, fluid, and coupling phases of the problem are presented. Different boundary, interface and excitation conditions are accounted for. The convergence behaviour, accuracy, and efficiency of the method is examined through a set of illustrative examples. A node insertion strategy is proposed to resolve non-conforming interfaces that naturally arise in multilayered systems. Finally the power of the VEM is exploited to examine the acoustic response of composite materials with periodic and non-periodic inclusions of complex geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  1. Tychsen J, Rösler J (2020) Production and characterization of porous materials with customized acoustic and mechanical properties, In: Fundamentals of High Lift for Future Civil Aircraft, Springer, pp. 497–512

  2. Hirosawa K (2020) Numerical study on the influence of fiber cross-sectional shapes on the sound absorption efficiency of fibrous porous materials. Appl Acoust 164:107222

    Google Scholar 

  3. Liu Z, Fard M, Davy JL (2020) Prediction of the acoustic effect of an interior trim porous material inside a rigid-walled car air cavity model. Appl Acoust 165:107325

    Google Scholar 

  4. Cummer SA, Christensen J, Alù A (2016) Controlling sound with acoustic metamaterials. Nature Rev Mater 1(3):1–13

    Google Scholar 

  5. Ma G, Sheng P (2016) Acoustic metamaterials: From local resonances to broad horizons. Sci Adv 2(2):e1501595

    MathSciNet  Google Scholar 

  6. Fitzgerald R (1975) Helmholtz equation as an initial value problem with application to acoustic propagation. J Acoust Soc Am 57(4):839–842

    MATH  Google Scholar 

  7. Zwikker C, Kosten CW (1949) Sound absorbing materials. Elsevier publishing company

  8. Chevillotte F, Jaouen L, Bécot F-X (2015) On the modeling of visco-thermal dissipations in heterogeneous porous media. J Acoust Soc Am 138(6):3922–3929

    Google Scholar 

  9. Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid .i. low-frequency range. J Acoust Soc Am 28(2):168–178

    MathSciNet  Google Scholar 

  10. Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid .ii. higher frequency range. J Acoust Soc Am 28(2):179–191

    MathSciNet  Google Scholar 

  11. Atalla N, Panneton R, Debergue P (1998) A mixed displacement-pressure formulation for poroelastic materials. J Acoust Soc Am 104(3):1444–1452

    Google Scholar 

  12. Bécot F-X, Jaouen L (2013) An alternative Biots formulation for dissipative porous media with skeleton deformation. J Acoust Soc Am 134(6):4801–4807

    Google Scholar 

  13. Jaouen L Acoustical porous material recipes, Website. https://apmr.matelys.com/

  14. Chevillotte F, Perrot C, Guillon E (2013) A direct link between microstructure and acoustical macro-behavior of real double porosity foams. J Acoust Soc Am 134(6):4681–4690

    Google Scholar 

  15. Perrot C, Chevillotte C, Panneton R (2009) Micro-/macro relations linking local geometry parameters to sound absorption of porous media (MiPoM)

  16. Johnson DL, Koplik J, Dashen R (1987) Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J Fluid Mech 176:379–402

    MATH  Google Scholar 

  17. Champoux Y, Allard J-F (1991) Dynamic tortuosity and bulk modulus in air-saturated porous media. J Appl Phys 70:1975–1979

    Google Scholar 

  18. Lafarge D, Lemarinier P, Allard J-F, Tarnow V (1997) Dynamic compressibility of air in porous structures at audible frequencies. J Acoust Soc Am 102(4):1995–2006

    Google Scholar 

  19. Miki Y (1990) Acoustical properties of porous materials-modifications of Delany-Bazley models. J Acoust Soc Japan (E) 11(1):19–24

    Google Scholar 

  20. Mousavi S, Sukumar N (2011) Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons. Comput Mech 47(5):535–554

    MathSciNet  MATH  Google Scholar 

  21. Bishop JE (2014) A displacement-based finite element formulation for general polyhedra using harmonic shape functions. Int J Numer Methods Eng 97(1):1–31

    MathSciNet  MATH  Google Scholar 

  22. Manzini G, Russo A, Sukumar N (2014) New perspectives on polygonal and polyhedral finite element methods. Math Models Methods Appl Sci 24(08):1665–1699

    MathSciNet  MATH  Google Scholar 

  23. Talischi C, Paulino GH, Pereira A, Menezes IF (2012) Polytop: a matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes. Struct Multidiscip Optimizat 45(3):329–357

    MathSciNet  MATH  Google Scholar 

  24. Paulino GH, Gain AL (2015) Bridging art and engineering using escher-based virtual elements. Struct Multidiscip Optim 51(4):867–883

    MathSciNet  Google Scholar 

  25. Spring DW, Leon SE, Paulino GH (2014) Unstructured polygonal meshes with adaptive refinement for the numerical simulation of dynamic cohesive fracture. Int J Fract 189(1):33–57

    Google Scholar 

  26. Sukumar N, Bolander J (2009) Voronoi-based interpolants for fracture modelling. Tessellations Sci 485

  27. Leon S, Spring D, Paulino G (2014) Reduction in mesh bias for dynamic fracture using adaptive splitting of polygonal finite elements. Int J Numer Methods Eng 100(8):555–576

    MathSciNet  MATH  Google Scholar 

  28. Biabanaki S, Khoei A, Wriggers P (2014) Polygonal finite element methods for contact-impact problems on non-conformal meshes. Comput Methods Appl Mech Eng 269:198–221

    MathSciNet  MATH  Google Scholar 

  29. Talischi C, Pereira A, Paulino GH, Menezes IF, Carvalho MS (2014) Polygonal finite elements for incompressible fluid flow. Int J Numer Methods Fluids 74(2):134–151

    MathSciNet  MATH  Google Scholar 

  30. Wachspress EL, EL W, (1975) A rational finite element basis. Math Sci Eng 114:1–331

  31. Warren J (1996) Barycentric coordinates for convex polytopes. Adv Comput Math 6(1):97–108

    MathSciNet  MATH  Google Scholar 

  32. Sibson R (1980) A vector identity for the dirichlet tessellation, In: Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 87, Cambridge University Press, 1980, pp. 151–155

  33. Belikov V, Ivanov V, Kontorovich V, Korytnik S, Semenov AY (1997) The non-sibsonian interpolation: a new method of interpolation of the values of a function on an arbitrary set of points. Comput Math Math Phys 37(1):9–15

    MathSciNet  MATH  Google Scholar 

  34. Floater MS (2003) Mean value coordinates. Comput Aided Geometr Des 20(1):19–27

    MathSciNet  MATH  Google Scholar 

  35. Floater MS, Kós G, Reimers M (2005) Mean value coordinates in 3d. Comput Aided Geometr Des 22(7):623–631

    MathSciNet  MATH  Google Scholar 

  36. Sukumar N (2004) Construction of polygonal interpolants: a maximum entropy approach. Int J Numer Methods Eng 61(12):2159–2181

    MathSciNet  MATH  Google Scholar 

  37. Arroyo M, Ortiz M (2006) Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods. Int J Numer Method Eng 65(13):2167–2202

    MathSciNet  MATH  Google Scholar 

  38. Sukumar N, Malsch E (2006) Recent advances in the construction of polygonal finite element interpolants. Archives Comput Methods Eng 13(1):129

    MathSciNet  MATH  Google Scholar 

  39. Natarajan S, Bordas S, Roy Mahapatra D (2009) Numerical integration over arbitrary polygonal domains based on Schwarz-Christoffel conformal mapping. Int J Numer Methods Eng 80(1):103–134

    MathSciNet  MATH  Google Scholar 

  40. Beirão Da Veiga L, Brezzi F, Cangiani A, Manzini G, Marini L, Russo A (2013) Basic principles of virtual element methods. Math Models Methods Appl Sci 23(1):199–214

    MathSciNet  MATH  Google Scholar 

  41. Ahmad B, Alsaedi A, Brezzi F, Marini LD (2013) Equivalent projectors for virtual element methods. Comput Math Appl 66(3):376–391

    MathSciNet  MATH  Google Scholar 

  42. Brezzi F, Falk RS, Marini LD (2016) Basic principles of mixed virtual element methods. ESAIM Math Modell Numer Anal 48(4):1227–1240

    MathSciNet  MATH  Google Scholar 

  43. Bonelle J, Ern A (2014) Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes. ESAIM Math Modell Numer Anal 48(2):553–581

    MathSciNet  MATH  Google Scholar 

  44. Vacca G, Beirão da Veiga L (2015) Virtual element methods for parabolic problems on polygonal meshes. Numer Methods Partial Differ Equ 31(6):2110–2134

    MathSciNet  MATH  Google Scholar 

  45. de Dios BA, Lipnikov K, Manzini G (2016) The nonconforming virtual element method. ESAIM Math Modell Numer Anal 50(3):879–904

    MathSciNet  MATH  Google Scholar 

  46. Lipnikov K, Manzini G, Shashkov M (2014) Mimetic finite difference method. J Comput Phys 257:1163–1227

    MathSciNet  MATH  Google Scholar 

  47. Beirão Da Veiga L, Brezzi F, Marini L, Russo A (2014) The hitchhikers guide to the virtual element method. Math Models Methods Appl Sci 24(8):1541–1573

    MathSciNet  MATH  Google Scholar 

  48. Da Veiga LB, Russo A, Vacca G (2019) The virtual element method with curved edges. ESAIM: Math Modell Numer Anal 53(2):375–404

    MathSciNet  MATH  Google Scholar 

  49. Artioli E, da Veiga LB, Verani M (2020) An adaptive curved virtual element method for the statistical homogenization of random fibre-reinforced composites. Finite Elements Anal Des 177:103418

    MathSciNet  Google Scholar 

  50. Wriggers P, Hudobivnik B, Aldakheel F (2020) A virtual element formulation for general element shapes. Comput Mech 1–15

  51. Nguyen-Thanh VM, Zhuang X, Nguyen-Xuan H, Rabczuk T, Wriggers P (2018) A virtual element method for 2d linear elastic fracture analysis. Comput Methods Appl Mech Eng 340:366–395

    MathSciNet  MATH  Google Scholar 

  52. Aldakheel F, Hudobivnik B, Wriggers P (2019) Virtual element formulation for phase-field modeling of ductile fracture. Int J Multiscale Comput Eng 17(2)

  53. Hussein A, Hudobivnik B, Wriggers P (2020) A combined adaptive phase field and discrete cutting method for the prediction of crack paths. Comput Methods Appl Mech Eng 372:113329

    MathSciNet  MATH  Google Scholar 

  54. Beirão da Veiga L, Mora D, Rivera G (2016) A virtual element method for Reissner-Mindlin plates, Tech. rep., CI2MA preprint 2016-14, available from http://www.ci2ma.udec.cl

  55. Chinosi C (2017) Vem for the Reissner-Mindlin plate based on the mitc approach: The element of degree 2, In: European Conference on Numerical Mathematics and Advanced Applications, Springer, pp. 519–527

  56. Gyrya V, Mourad HM (2016) C1-continuous virtual element method for Poisson-Kirchhoff plate problem, Tech. rep., Los Alamos National Lab.(LANL), Los Alamos, NM (United States)

  57. Gain A, Talischi C, Paulino GH (2013) On the virtual element method for three-dimensional elasticity problems on arbitrary polyhedral meshes. Comput Methods Appl Mech Eng 282:132–160. https://doi.org/10.1016/j.cma.2014.05.005

    Article  MathSciNet  MATH  Google Scholar 

  58. Artioli E, De Miranda S, Lovadina C, Patruno L (2017) A stress/displacement virtual element method for plane elasticity problems. Comput Methods Appl Mech Eng 325:155–174

    MathSciNet  MATH  Google Scholar 

  59. Artioli E, Da Veiga LB, Lovadina C, Sacco E (2017) Arbitrary order 2d virtual elements for polygonal meshes: part i, elastic problem. Comput Mech 60(3):355–377

    MathSciNet  MATH  Google Scholar 

  60. Beirão Da Veiga L, Brezzi F, Marini LD (2013) Virtual elements for linear elasticity problems. SIAM J Numer Anal 51(2):794–812

    MathSciNet  MATH  Google Scholar 

  61. Sreekumar A, Triantafyllou SP, Bécot F-X, Chevillotte F (2020) A multiscale virtual element method for the analysis of heterogeneous media. Int J Numer Methods Eng 121(8):1791–1821

    MathSciNet  MATH  Google Scholar 

  62. Wriggers P, Rust W, Reddy B (2016) A virtual element method for contact. Comput Mech 58(6):1039–1050

    MathSciNet  MATH  Google Scholar 

  63. Artioli E, Marfia S, Sacco E (2018) High-order virtual element method for the homogenization of long fiber nonlinear composites. Comp Methods Appl Mech Eng 341(2018):571–585

    MathSciNet  MATH  Google Scholar 

  64. Pingaro M, De Bellis ML, Trovalusci P, Masiani R (2021) Statistical homogenization of polycrystal composite materials with thin interfaces using virtual element method. Compos Struct 264:113741

    Google Scholar 

  65. da Veiga LB, Mora D, Rivera G, Rodríguez R (2017) A virtual element method for the acoustic vibration problem. Numer Math 136(3):725–763

    MathSciNet  MATH  Google Scholar 

  66. Perugia I, Pietra P, Russo A (2016) A plane wave virtual element method for the Helmholtz problem. ESAIM: Math Modell Numer Anal 50(3):783–808

    MathSciNet  MATH  Google Scholar 

  67. Böhm C, Hudobivnik B, Marino M, Wriggers P (2021) Electro-magneto-mechanically response of polycrystalline materials: computational homogenization via the virtual element method. Comput Methods Appl Mech Eng 380:113775

    MathSciNet  MATH  Google Scholar 

  68. Andersen O, Nilsen HM, Raynaud X (2017) Virtual element method for geomechanical simulations of reservoir models. Comput Geosci 21(5–6):877–893

    MathSciNet  MATH  Google Scholar 

  69. Nilsen HM, Larsen I, Raynaud X (2017) Combining the modified discrete element method with the virtual element method for fracturing of porous media. Comput Geosci 21(5):1059–1073

    MathSciNet  MATH  Google Scholar 

  70. Vacca G (2018) An H1-conforming virtual element for Darcy and Brinkman equations. Math Models Methods Appl Sci 28(01):159–194

    MathSciNet  MATH  Google Scholar 

  71. Cáceres E, Gatica GN, Sequeira FA (2017) A mixed virtual element method for the brinkman problem. Math Models Methods Appl Sci 27(04):707–743

    MathSciNet  MATH  Google Scholar 

  72. Beirão Da Veiga L, Brezzi F, Marini LD, Russo A (2016) Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM Math Modell Numer Anal 50:727–747

    MathSciNet  MATH  Google Scholar 

  73. Dassi F, Vacca G (2020) Bricks for the mixed high-order virtual element method: projectors and differential operators. Appl Numer Math 155:140–159

    MathSciNet  MATH  Google Scholar 

  74. Coulet J, Faille I, Girault V, Guy N, Nataf F (2020) A fully coupled scheme using virtual element method and finite volume for poroelasticity. Comput Geosci 24(2):381–403

    MathSciNet  MATH  Google Scholar 

  75. Bürger R, Kumar S, Mora D, Ruiz-Baier R, Verma N. Virtual element methods for the three-field formulation of time-dependent linear poroelasticity, arXiv preprint arXiv:1912.06029

  76. Sreekumar A, Triantafyllou SP, Bécot F-X, Chevillotte F (2021) Multiscale vem for the Biot consolidation analysis of complex and highly heterogeneous domains. Comp Methods Appl Mech Eng 375:113543

    MathSciNet  MATH  Google Scholar 

  77. da Veiga LB, Pichler A, Vacca G (2021) A virtual element method for the miscible displacement of incompressible fluids in porous media. Comput Methods Appl Mech Eng 375:113649

    MathSciNet  MATH  Google Scholar 

  78. Borio A, Hamon FP, Castelletto N, White JA, Settgast RR (2021) Hybrid mimetic finite-difference and virtual element formulation for coupled poromechanics. Comp Methods Appl Mech Eng 383:113917

    MathSciNet  MATH  Google Scholar 

  79. Sigrist J-F (2015) Fluid-structure interaction: an introduction to finite element coupling. John Wiley & Sons, NY

    MATH  Google Scholar 

  80. Biot MA (1962) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33(4):1482–1498

    MathSciNet  MATH  Google Scholar 

  81. Dazel O, Brouard B, Depollier C, Griffiths S (2007) An alternative Biots displacement formulation for porous materials. J Acoust Soc Am 121(6):3509–3516

    Google Scholar 

  82. Debergue P, Panneton R, Atalla N (1999) Boundary conditions for the weak formulation of the mixed (u, p) poroelasticity problem. J Acoust Soc Am 106(5):2383–2390

    Google Scholar 

  83. Mengolini M, Benedetto MF, Aragon AM (2019) An engineering perspective to the virtual element method and its interplay with the standard finite element method. Comput Methods Appl Mech Eng 350(6):995–1023. https://doi.org/10.1016/j.cma.2019.02.043

  84. Beirão Da Veiga L, Brezzi F, Marini L, Russo A (2016) Serendipity nodal vem spaces. Comput Fluids 141:2–12

    MathSciNet  MATH  Google Scholar 

  85. Cangiani A, Manzini G, Russo A, Sukumar N (2015) Hourglass stabilization and the virtual element method. Int J Numer Methods Eng 102(3–4):404–436

    MathSciNet  MATH  Google Scholar 

  86. Beirão da Veiga L, Lovadina C, Russo A (2017) Stability analysis for the virtual element method. Math Models Methods Appl Sci 27(13):2557–2594

    MathSciNet  MATH  Google Scholar 

  87. Dassi F, Mascotto L (2018) Exploring high-order three dimensional virtual elements: bases and stabilizations. Comput Math Appl 75(9):3379–3401

    MathSciNet  MATH  Google Scholar 

  88. Sorgente T, Biasotti S, Manzini G, Spagnuolo M. The role of mesh quality and mesh quality indicators in the virtual element method, arXiv preprint arXiv:2102.04138

  89. Allard J, Atalla N (2009) Propagation of sound in porous media: modelling sound absorbing materials 2e. John Wiley & Sons, NY

    Google Scholar 

  90. Strouboulis T, Copps K, Babuška I (2000) The generalized finite element method: an example of its implementation and illustration of its performance. Int J Numer Methods Eng 47(8):1401–1417

    MathSciNet  MATH  Google Scholar 

  91. Farhat C, Harari I, Franca LP (2001) The discontinuous enrichment method. Comp Methods Appl Mech Eng 190(48):6455–6479

    MathSciNet  MATH  Google Scholar 

  92. Patera AT (1984) A spectral element method for fluid dynamics: laminar flow in a channel expansion. J Comput Phys 54(3):468–488

    MATH  Google Scholar 

  93. Nobrega E, Gautier F, Pelat A, Dos Santos J (2016) Vibration band gaps for elastic metamaterial rods using wave finite element method. Mech Syst Sig Process 79:192–202

    Google Scholar 

  94. Zienkiewicz O, Emson C, Bettess P (1983) A novel boundary infinite element. Int J Numer Methods Eng 19(3):393–404

    MathSciNet  MATH  Google Scholar 

  95. Chew WC, Liu Q (1996) Perfectly matched layers for elastodynamics: a new absorbing boundary condition. J Comput Acoust 4(04):341-359

    Google Scholar 

  96. Soliman M, DiMaggio FL (1983) Doubly asymptotic approximations as non-reflecting boundaries in fluid-structure interaction problems. Comput Struct 17(2):193–204

    MATH  Google Scholar 

  97. Atalla N, Sgard F (2015) Finite element and boundary methods in structural acoustics and vibration. CRC Press, NY

    MATH  Google Scholar 

  98. Wohlmuth BI (2000) A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J Numer Anal 38(3):989–1012

    MathSciNet  MATH  Google Scholar 

  99. Wadbro E, Zahedi S, Kreiss G, Berggren M (2013) A uniformly well-conditioned, unfitted Nitsche method for interface problems. BIT Numer Math 53(3):791–820

    MathSciNet  MATH  Google Scholar 

  100. Dazel O, Bécot F-X, Jaouen L (2012) Biot effects for sound absorbing double porosity materials. Acta Acust united Acust 98(4):567–576

    Google Scholar 

  101. Groby J-P, Dazel O, Duclos A, Boeckx L, Kelders L (2011) Enhancing the absorption coefficient of a backed rigid frame porous layer by embedding circular periodic inclusions. J Acoust Soc Am 130(6):3771–3780

    Google Scholar 

Download references

Acknowledgements

This work has been carried out under the auspices of the grant: ”European industrial doctorate for advanced, lightweight and silent, multifunctional composite structures—N2N”. The N2N project is funded under the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Actions Grant: 765472.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savvas P. Triantafyllou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A monomial spaces

The contents of the monomial spaces \([{\mathbb {M}}_k({\mathcal {K}})]^2\) and \([{\mathbb {M}}_k({\mathcal {K}})]\) are iteratively defined in Table 11.

Table 11 Generalized scalar and vector valued monomials for \({\mathbb {M}}_k({\mathcal {K}})\) and \([{\mathbb {M}}_k({\mathcal {K}})]^2\), respectively

In Table 11, \(\xi = \frac{x-x_{{\mathcal {K}}}}{h_{{\mathcal {K}}}}\) and \(\eta = \frac{y-y_{{\mathcal {K}}}}{h_{{\mathcal {K}}}}\) denote scaled monomials in each parametric direction. The number of terms in \([{\mathbb {M}}_k({\mathcal {K}})]^2\) and \([{\mathbb {M}}_k({\mathcal {K}})]\) are \(n^u_k = (k+1)(k+2)\) and \(n^p_k = \frac{(k+1)(k+2)}{2}\), respectively. The operator-specific kernels are provided in Table 12. The contents of these kernels can be derived using kinematical decomposition relations mentioned in [73].

Table 12 Definition of operator kernels

The zero-energy modes contained in \({\mathbb {K}}^{\varepsilon }({\mathcal {K}})\) can be understood as rigid body motions, i.e., two translations and one rotation in 2-D physical space.

Appendix B computing B matrices

Using quadratures, Eq. (66) results in

$$\begin{aligned} {\mathbf {B}}^{\nabla u}_j={\mathbf {B}}_{bj}^{\nabla u}+{\mathbf {B}}_{dj}^{\nabla u}, \end{aligned}$$
(128)

where

$$\begin{aligned} {\mathbf {B}}^{\nabla u}_{bj}=\sum \limits _{e \in \partial {\mathcal {K}}}\int \limits _{e} {\mathbf {u}}_h \cdot (\delta ^{\star } \nabla {\mathbf {m}}_{j+2}\, {\mathbf {n}}^{\nabla }_e) \, \text {d}e, \end{aligned}$$
(129)

and

$$\begin{aligned} {\mathbf {B}}^{\nabla u}_{dj}=-\int \limits _{{\mathcal {K}}\setminus \partial {\mathcal {K}}} {\mathbf {u}}_h \cdot (\delta ^{\star }\varDelta {\mathbf {m}}_{j+2}) \, \text {d}{\mathcal {K}} \end{aligned}$$
(130)

respectively.

Similarly, Eq. (69) becomes

$$\begin{aligned} {\mathbf {B}}^{\nabla p}_j= {\mathbf {B}}_{bj}^{\nabla p}+{\mathbf {B}}_{dj}^{\nabla p}, \end{aligned}$$
(131)

where

$$\begin{aligned} {\mathbf {B}}^{\nabla p}_{bj}=\sum \limits _{e \in \partial {\mathcal {K}}}\int \limits _{e} \text {p}_h \cdot \Big ( \frac{1}{{\tilde{\rho }}_{\text {eq}}} \nabla \text {m}_{j+1}\cdot {\mathbf {n}}^{\nabla }\left( e\right) \Big ) \, \text {d}e, \end{aligned}$$
(132)

and

$$\begin{aligned} {\mathbf {B}}^{\nabla p}_{dj}=-\int \limits _{{\mathcal {K}}\setminus \partial {\mathcal {K}}} \text {p}_h \cdot \Big (\frac{1}{{\tilde{\rho }}_{\text {eq}}}\varDelta \text {m}_{j+1} \Big ) \, \text {d}{\mathcal {K}} \end{aligned}$$
(133)

respectively, where the array \({\mathbf {n}}^{\nabla }\left( e\right) \) is defined here as

$$\begin{aligned} {\mathbf {n}}^{\nabla }\left( e\right) = \begin{bmatrix} n_x\left( e\right)&n_y\left( e\right) \end{bmatrix}^T. \end{aligned}$$
(134)

The boundary integrals in Eqs. (128) and (131) are evaluated using Gauss-Lobatto quadratures in a similar manner to Eq. (74).

To evaluate the corresponding domain integrals, the terms \(\varDelta {\mathbf {m}}_{j+2}\) in Eq. (130) is expanded over the \([{\mathbb {M}}_{k-2}({\mathcal {K}})]^2\) basis

$$\begin{aligned} \delta ^{\star } \varDelta {\mathbf {m}}_{j+2} = \sum \limits _{\beta =1}^{n^u_{k-2}} \text {d}_{j \beta }^{\nabla u} {\mathbf {m}}_{\beta } , \quad \forall \, {\mathbf {m}}_{\beta } \in [{\mathbb {M}}_{k-2}({\mathcal {K}})]^2. \end{aligned}$$
(135)

Inserting Eq. (135) in Eq. (130) the following expression is derived

$$\begin{aligned} {\mathbf {B}}^{\nabla u}_{dj} = - |{\mathcal {K}}| \sum \limits _{\beta = 1}^{n^u_{k-2}} \text {d}_{j \beta }^{\nabla u} \text {dof}_{kN_v+\beta }({\mathbf {u}}_h) = - |{\mathcal {K}}| {\mathbf {d}}^{\nabla u}, \end{aligned}$$
(136)

where

(137)

Similarly, expanding \(\varDelta \text {m}_{j+1}\) over the basis \({\mathbb {M}}_{k-2}({\mathcal {K}})\)

$$\begin{aligned} \frac{1}{{\tilde{\rho }}_{\text {eq}}}\varDelta \text {m}_{j+1} = \sum \limits _{\beta =1}^{n^p_{k-2}} \text {d}_{j \beta }^{\nabla p} \text {m}_{\beta } , \quad \forall \, \text {m}_{\beta } \in {\mathbb {M}}_{k-2}({\mathcal {K}}), \end{aligned}$$
(138)

where the coefficients \(\text {d}_{j \beta }^{\nabla p}\) are also obtained through inspection and substituting in Eq. (133)

$$\begin{aligned} {\mathbf {B}}^{\nabla p}_{dj} = - |{\mathcal {K}}| \sum \limits _{\beta = 1}^{n^p_{k-2}} \text {d}_{j \beta }^{\nabla p} \text {dof}_{kN_v+\beta }(\text {p}_h) = - |{\mathcal {K}}| {\mathbf {d}}^{\nabla p}, \end{aligned}$$
(139)

where

(140)

Appendix C computing D matrices

The matrices \({\mathbf {D}}^{{\varvec{\varepsilon }}}\), \({\mathbf {D}}^{0 u}\), \({\mathbf {D}}^{\nabla p}\), and \({\mathbf {D}}^{0 p}\) in Eqs. (105)–(108) assume the following form

$$\begin{aligned}&\begin{aligned}{\mathbf {D}}^{{\varvec{\varepsilon }}} = \begin{bmatrix} \text {dof}_1({\mathbf {m}}_1) &{} \ldots &{} \text {dof}_1({\mathbf {m}}_{n_k^u-3}) \\ \vdots &{} \ddots &{} \vdots \\ \text {dof}_{n^u_{\text {dof}}}({\mathbf {m}}_1) &{} \ldots &{} \text {dof}_{n^u_{\text {dof}}}({\mathbf {m}}_{n_k^u-3}) \end{bmatrix}, \\ \forall \, {\mathbf {m}} \in [{\mathbb {M}} _{\text {k}}({\mathcal {K}})]^2 \setminus {\mathbb {K}}^{{\varvec{\varepsilon }}} ({\mathcal {K}}) \end{aligned} \end{aligned}$$
(141a)
$$\begin{aligned}&\begin{aligned}{\mathbf {D}}^{0 u} = \begin{bmatrix} \text {dof}_1({\mathbf {m}}_1) &{} \ldots &{} \text {dof}_1({\mathbf {m}}_{n_k^{u}}) \\ \vdots &{} \ddots &{} \vdots \\ \text {dof}_{n^u_{\text {dof}}}({\mathbf {m}}_1) &{} \ldots &{} \text {dof}_{n^u_{\text {dof}}}({\mathbf {m}}_{n_k^{u}}) \end{bmatrix}, \\ \forall \, {\mathbf {m}} \in [{\mathbb {M}}_{\text {k}}({\mathcal {K}})]^2 \end{aligned}\end{aligned}$$
(141b)
$$\begin{aligned}&\begin{aligned}{\mathbf {D}}^{\nabla p} = \begin{bmatrix} \text {dof}_1(\text {m}_1) &{} \ldots &{} \text {dof}_1(\text {m}_{n_k^{p}-1}) \\ \vdots &{} \ddots &{} \vdots \\ \text {dof}_{n^p_{\text {dof}}}(\text {m}_1) &{} \ldots &{} \text {dof}_{n^p_{\text {dof}}}(\text {m}_{n_k^{p}-1}) \end{bmatrix}, \\ \forall \,\text {m} \in {\mathbb {M}}_{\text {k}}({\mathcal {K}}) \setminus {\mathbb {K}}^{\nabla }({\mathcal {K}}) \end{aligned}\end{aligned}$$
(141c)
$$\begin{aligned}&\begin{aligned}{\mathbf {D}}^{0 p} = \begin{bmatrix} \text {dof}_1(\text {m}_1) &{} \ldots &{} \text {dof}_1(\text {m}_{n_k^{p}}) \\ \vdots &{} \ddots &{} \vdots \\ \text {dof}_{n^p_{\text {dof}}}(\text {m}_1) &{} \ldots &{} \text {dof}_{n^p_{\text {dof}}}(\text {m}_{n_k^{p}}) \end{bmatrix}, \\ \forall \, \text {m} \in {\mathbb {M}}_{\text {k}}({\mathcal {K}}). \end{aligned} \end{aligned}$$
(141d)

The quantities \(\text {dof}_i({\mathbf {m}}_j)\) and \(\text {dof}_i(\text {m}_j)\) are evaluated according to the following expressions (see Table 4), for the solid

$$\begin{aligned} {\left\{ \begin{array}{ll} \text {dof}_i({\mathbf {m}}_j) = {\mathbf {m}}_j({\mathbf {x}}_i), \quad \forall \, i \le 2kN_v \\ \text {dof}_i({\mathbf {m}}_j) = \frac{1}{|{\mathcal {K}}|} \int \limits _{{\mathcal {K}}} {\mathbf {m}}_j \cdot {\mathbf {m}}_{\beta } \, \text {d}{\mathcal {K}}, \\ \forall \, {\mathbf {m}}_{\beta } \in [{\mathbb {M}}_{k-2}({\mathcal {K}})]^2, \quad i >2kN_v, \end{array}\right. } \end{aligned}$$
(142)

and the fluid phase

$$\begin{aligned} {\left\{ \begin{array}{ll} \text {dof}_i(\text {m}_j) = \text {m}_j({\mathbf {x}}_i), \quad \forall \, i \le kN_v \\ \text {dof}_i(\text {m}_j) = \frac{1}{|{\mathcal {K}}|} \int \limits _{{\mathcal {K}}} \text {m}_j \cdot \text {m}_{\beta } \, \text {d}{\mathcal {K}}, \\ \forall \, \text {m}_{\beta } \in {\mathbb {M}}_{k-2}({\mathcal {K}}), \quad i > kN_v \end{array}\right. }, \end{aligned}$$
(143)

respectively.

Appendix D computing sound absorption and transmission loss coefficients

The complex valued surface impedance at the incident face normalized with respect to the impedance of air \(z(\theta )\) is computed

$$\begin{aligned} Z_{\text {sn}\, {\mathcal {K}}}(\omega ,\theta ) = \Big (\frac{\text {p}^{\text {in}}_{{\mathcal {K}}}}{\text {v}^{\text {in}}_{n{\mathcal {K}}}} \Big )_{\varGamma ^{{\mathcal {K}}}_{hI}} \big / z(\theta ) \end{aligned}$$
(144)

where \(\text {p}^{\text {in}}_{{\mathcal {K}}}\) and \(\text {v}^{\text {in}}_{n{\mathcal {K}}}\) denote inlet pressures and normal component of fluid velocities over the elementary incident face \({\varGamma ^{{\mathcal {K}}}_{hI}}\). This quantity is now used to obtain the elementary coefficient of reflection:

$$\begin{aligned} R_{{\mathcal {K}}}(\omega ,\theta ) = \frac{ Z_{\text {sn}\, {\mathcal {K}}}(\omega ,\theta )-1}{ Z_{\text {sn}\, {\mathcal {K}}}(\omega ,\theta )+1} \end{aligned}$$
(145)

As the VEM computes only resultant quantities (the net incident and reflected waves), one requires \(R_{{\mathcal {K}}}(\omega ,\theta )\) to obtain purely incident pressures and normal fluid velocities over \({\varGamma ^{{\mathcal {K}}}_{hI}}\).

$$\begin{aligned} \text {p}^{\text {inc}}_{{\mathcal {K}}} = \bigg | \frac{\text {p}^{\text {in}}_{{\mathcal {K}}}}{1+ R_{{\mathcal {K}}}(\omega ,\theta )}\bigg |_{\varGamma ^{{\mathcal {K}}}_{hI}}, \quad \text {v}^{\text {inc}}_{n {\mathcal {K}}} = \frac{\text {p}^{\text {inc}}_{{\mathcal {K}}}}{z(\theta )} \end{aligned}$$
(146)

The time averaged powers are evaluated according to Eqs. (147) below

$$\begin{aligned}&\begin{aligned} {\mathbb {W}}^{\text {in}}(\omega ,\theta ) = \frac{1}{2} \mathfrak {R}\Bigg (\int \limits _{\varGamma _{hI}} \text {p}^{\text {in}} \cdot \text {v}_n^{\text {in} \, *}\, d \varGamma \Bigg )= \\ \frac{1}{2} \mathfrak {R}\Bigg (\sum \limits _{i} \int \limits _{\varGamma _{hI}^{{\mathcal {K}}(i)}} \text {p}^{\text {in}}_{{\mathcal {K}}(i)} \cdot \text {v}_{n{\mathcal {K}}(i)}^{\text {in} \, *}\, d \varGamma \Bigg ), \end{aligned} \end{aligned}$$
(147a)
$$\begin{aligned}&\begin{aligned} {\mathbb {W}}^{\text {inc}}(\omega ,\theta ) = \frac{1}{2} \int \limits _{\varGamma _{hI}} \text {p}^{\text {inc}} \cdot \text {v}^{\text {inc}}_n\, d \varGamma = \\ \frac{1}{2} \sum \limits _{i} \int \limits _{\varGamma _{hI}^{{\mathcal {K}}(i)}} \text {p}^{\text {inc}}_{{\mathcal {K}}(i)} \cdot \text {v}^{\text {inc}}_{n{\mathcal {K}}(i)}\, d \varGamma , \end{aligned} \end{aligned}$$
(147b)
$$\begin{aligned}&{\mathbb {W}}^{\text {ref}}(\omega ,\theta ) = {\mathbb {W}}^{\text {inc}}(\omega ,\theta )-{\mathbb {W}}^{\text {in}}(\omega ,\theta ), \end{aligned}$$
(147c)
$$\begin{aligned}&\begin{aligned} {\mathbb {W}}^{\text {trans}}(\omega ,\theta ) = \frac{1}{2} \mathfrak {R}\Bigg (\int \limits _{\varGamma _{hO}} \text {p}^{\text {out}} \cdot \text {v}_n^{\text {out} \, *}\, d \varGamma \Bigg )= \\ \frac{1}{2} \mathfrak {R}\Bigg (\sum \limits _{i} \int \limits _{\varGamma _{hO}^{{\mathcal {K}}(i)}} \text {p}^{\text {out}}_{{\mathcal {K}}(i)} \cdot \text {v}_{n{\mathcal {K}}(i)}^{\text {out} \, *}\, d \varGamma \Bigg ) , \end{aligned} \end{aligned}$$
(147d)

where \( {\mathbb {W}}^{\text {in}}\), \( {\mathbb {W}}^{\text {inc}}\), \( {\mathbb {W}}^{\text {ref}}\) and \( {\mathbb {W}}^{\text {trans}}\) represent inlet, incident, reflected and transmitted powers, respectively. The operator \(\mathfrak {R}(\cdot )\) extracts real valued data, Complex conjugation is denoted by \((*)\). Outlet fluid pressures and normal components of fluid velocity \(\text {p}^{\text {out}}_{{\mathcal {K}}(i)} \) and \(\text {v}_{n{\mathcal {K}}(i)}^{\text {out}}\) are evaluated over an elementary outlet face \({\varGamma _{hO}^{{\mathcal {K}}(i)}}\). The SAC and STL are finally derived for a plane wave incident at an angle \(\theta \) with a driving angular frequency of \(\omega \):

$$\begin{aligned} \alpha (\omega ,\theta ) \!=\! 1 - \frac{{\mathbb {W}}^{\text {ref}}(\omega ,\theta )}{{\mathbb {W}}^{\text {inc}}(\omega ,\theta )}, \quad {\mathcal {T}}(\omega ,\theta ) \!=\! 10 \text {log}\frac{{\mathbb {W}}^{\text {inc}}(\omega ,\theta )}{{\mathbb {W}}^{\text {trans}}(\omega ,\theta )}. \end{aligned}$$
(148)

For a detailed report investigating the post-processing procedures involved in structural and porous vibro-acoustics, see, e.g., [89, 97].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreekumar, A., Triantafyllou, S.P. & Chevillotte, F. Virtual elements for sound propagation in complex poroelastic media. Comput Mech 69, 347–382 (2022). https://doi.org/10.1007/s00466-021-02078-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-021-02078-2

Keywords

Navigation