Skip to main content

Advertisement

Log in

A porous ZnCo2O4 nanosheets arrays as a binder-free electrode for high-performance flexible supercapacitor materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, a porous ZnCo2O4 nanosheet arrays (NAs)/carbon cloth (CC) binder-free anode for the flexible energy storage devices application was constructed by the hydrothermal method and subsequent annealing treatment. This anode electrode material shows multistage pore distribution that can provide numerous ways for the transport of ions and electrons. As a supercapacitor electrode, the flexible ZnCo2O4/CC electrode indicates a high specific capacitance (1790 F/g at the current density of 1 A/g), good rate performance, and excellent cycle properties (99.4% capacitance retention after 10,000 cycles). Besides, the flexible electrode also displays good mechanical flexibility. A solid-state asymmetric flexible supercapacitor device was assembled with the ZnCo2O4/CC electrode as the positive electrode and the carbon nanotube (CNTs)/CC as the negative electrode. This asymmetric device delivers high energy density of 47.1 Wh/kg (power density 800 W/kg) and power density of 12,000 W/kg (energy density 28.3 Wh/kg) with the potential window 0–1.6 V. These results indicate that the ZnCo2O4/CC flexible electrode with high electrochemical performance adjusts for environment-friendly and low-cost energy storage devices in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B. Dunn, H. Kamath, J.M. Tarascon, Science 334, 928–935 (2011)

    Article  CAS  Google Scholar 

  2. Q. Liu, X. Hong, X. Zhang, W. Wang, W. Guo, X. Liu, M. Ye, Chem. Eng. J. 356, 985–993 (2019)

    Article  CAS  Google Scholar 

  3. L.R. Hou, Y.Y. Shi, C. Wu, Y.R. Zhang, Y.Z. Ma, X. Sun, J.F. Sun, X.G. Zhang, C.Z. Yuan, Adv. Funct. Mater. 28, 1705921 (2018)

    Article  Google Scholar 

  4. A.M. Zardkhoshoui, S.S.H. Davarani, Dalton Trans. 49, 10028–10041 (2020)

    Article  Google Scholar 

  5. H. Liang, C. Xia, A.H. Emwas, D.H. Anjum, X. Miao, H.N. Alshareef, Nano Energy 49, 155–162 (2018)

    Article  CAS  Google Scholar 

  6. T. Xiong, T.L. Tan, L. Lu, W.S.V. Lee, J. Xue, Adv. Electron. Mater. 8, 1702630 (2018)

    Google Scholar 

  7. Y. Zhu, Q. Zong, Q. Zhang, H. Yang, Q. Wang, H. Wang, Electrochim. Acta 299, 441–450 (2019)

    Article  CAS  Google Scholar 

  8. T. Chen, S. Li, P. Gui, J. Wen, X. Fu, G. Fang, Nanotechnology 29, 205401 (2018)

    Article  Google Scholar 

  9. R. Arian, A.M. Zardkhoshoui, S.S.H. Davarani, ChemElectroChem 7, 2816–2825 (2020)

    Article  CAS  Google Scholar 

  10. Y.Y. Chen, Y. Zhang, X. Zhang, T. Tang, H. Luo, S. Niu, Z.H. Dai, L.J. Wan, J.S. Hu, Adv. Mater. 29, 1703311 (2017)

    Article  Google Scholar 

  11. M. Li, J.S. Meng, Q. Li, M. Huang, X. Liu, K.A. Owusu, Z. Liu, L.Q. Mai, Adv. Funct. Mater. 8, 1802016 (2018)

    Article  Google Scholar 

  12. S.Y. Zhou, S. Wang, S.J. Zhou, H.B. Xu, J.P. Zhao, J. Wang, Y. Li, Nanoscale 12, 8934–8941 (2020)

    Article  CAS  Google Scholar 

  13. H.B. Xu, L.T. Gong, S.Y. Zhou, New J. Chem. 44, 2236–2240 (2020)

    Article  CAS  Google Scholar 

  14. A.M. Zardkhoshoui, S. Saeed, H. Davarani, Nanoscale 12, 1643–1656 (2020)

    Article  Google Scholar 

  15. B. Ameri, A.M. Zardkhoshoui, S. Saeed, H. Davarani, Sustain. Energy Fuels 4, 5144–5155 (2020)

    Article  CAS  Google Scholar 

  16. Z.G. Zhang, X. Huang, H.X. Wang, S.H. Teo, T.L. Ma, J. Alloys Compd. 771, 274–280 (2019)

    Article  CAS  Google Scholar 

  17. J.S. Lin, L. Yao, Z.L. Li, P.X. Zhang, W.H. Zhong, Q.H. Yuan, L.B. Deng, Nanoscale 11, 3281–3291 (2019)

    Article  CAS  Google Scholar 

  18. W.D. He, Z.F. Liang, K.Y. Ji, Q.F. Sun, T.Y. Zhai, X.J. Xu, Nano Res. 11, 1415–1425 (2018)

    Article  CAS  Google Scholar 

  19. A.M. Zardkhoshoui, S. Saeed, H. Davarani, Chem. Eng. J. 402, 126–241 (2020)

    Article  Google Scholar 

  20. A.M. Zardkhoshoui, S. Saeed, H. Davarani, Nanoscale 5, 1–36 (2020)

    Article  Google Scholar 

  21. A.M. Zardkhoshoui et al., J. Power Sources 450, 227–691 (2020)

    Article  Google Scholar 

  22. S.S. Karade, S. Lalwani, J.H. Eum, H. Kim, Sustain. Energy Fuels 4, 1–32 (2020)

    Article  Google Scholar 

  23. S. Raj, S.K. Srivastava, P. Kar, P. Roy, Electrochim. Acta 302, 1–33 (2019)

    Article  Google Scholar 

  24. P.A. Shinde, N.R. Chodankar, S. Lee, E. Jung, S. Aftab, Y.K. Han, S. Jun, Chem. Eng. J. 405, 1–13 (2021)

    Article  Google Scholar 

  25. H. Chen, G.H. Jiang, W.J. Yu, D.P. Liu, Y.K. Liu, A.L. Li, Q. Huang, Z.Z. Tong, J. Mater. Chem. A 4, 5958–5965 (2016)

    Article  CAS  Google Scholar 

  26. V. Venkatachalam, A. Alsalme, A. Alswieleh, R. Jayavel, Chem. Eng. J. 321, 474–483 (2017)

    Article  CAS  Google Scholar 

  27. S.J. Patil, J. Park, D.W. Lee, IOP Conf. Ser.: Mater. Sci. Eng. 282, 1–6 (2017)

    Article  Google Scholar 

  28. B. Liu, J. Zhang, X.F. Wang, G. Chen, D. Chen, C.W. Zhou, G.Z. Shen, Nano Lett. 12, 3005–3011 (2012)

    Article  CAS  Google Scholar 

  29. X.M. Wu, L. Meng, Q.G. Wang, W.Z. Zhang, Y. Wang, Mater. Lett. 234, 1–4 (2019)

    Article  Google Scholar 

  30. Y.P. Huang, Y.E. Miao, H.Y. Lu, T.X. Liu, Chem. Eur. J. 21, 10100–10108 (2015)

    Article  CAS  Google Scholar 

  31. Q.H. Wang, Y.X. Zhu, J. Xue, X.S. Zhao, Z.P. Guo, C. Wang, ACS Appl. Mater. Interfaces 8, 17226–17232 (2016)

    Article  CAS  Google Scholar 

  32. Q.H. Wang, J.L. Du, Y.X. Zhu, J.Q. Yang, J. Chen, C. Wang, L. Li, L.F. Jiao, J. Power Sources 284, 138 (2015)

    Article  CAS  Google Scholar 

  33. H. Niu, X. Yang, H. Jiang, D. Zhou, X. Li, T. Zhang, J.Y. Liu, Q. Wang, F.Y. Qu, J. Mater. Chem. A 3, 24082 (2015)

    Article  CAS  Google Scholar 

  34. J.K. Sun, P. Zan, L. Ye, X.J. Yang, L.J. Zhao, J. Mater. Chem. A 5, 9815 (2017)

    Article  CAS  Google Scholar 

  35. H. Wu, Z. Lou, H. Yanga, G.Z. Shen, Nanoscale 7, 1921–1926 (2015)

    Article  CAS  Google Scholar 

  36. S.J. Peng, L.L. Li, H.B. Wu, S. Madhavi, X.W. Lou, Adv. Energy Mater. 5, 1401172 (2015)

    Article  Google Scholar 

  37. M.C. Liu, L.B. Kong, C. Lu, X.J. Ma, X.M. Li, Y.C. Luo, L. Kang, J. Mater. Chem. A 1, 1380–1387 (2013)

    Article  CAS  Google Scholar 

  38. C. Qing, C.X. Yang, M.Y. Chen, W.H. Li, S.Y. Wang, Y.W. Tang, Chem. Eng. J. 354, 182–190 (2018)

    Article  CAS  Google Scholar 

  39. Q.H. Wang, L.X. Zhu, L.Q. Sun, Y.C. Liu, L.F. Jiao, J. Mater. Chem. A 3, 982–985 (2015)

    Article  CAS  Google Scholar 

  40. F. Nti, D.A. Anang, J.I. Han, J. Alloys Compd. 742, 342–350 (2018)

    Article  CAS  Google Scholar 

  41. L. Huang, W. Zhang, J.W. Xiang, H.H. Xu, G.L. Li, Y.H. Huang, Sci. Rep. 6, 31465 (2016)

    Article  CAS  Google Scholar 

  42. J.L. Sun, S.S. Li, X.R. Han, F. Liao, Y.F. Zhang, L. Gao, H.Y. Chen, C.J. Xu, Ceram. Int. 45, 12243–12250 (2019)

    Article  CAS  Google Scholar 

  43. Y.Y. Shang, T. Xie, Y.S. Gai, L.H. Su, L.Y. Gong, H.J. Lv, F.Y. Dong, Electrochim. Acta 253, 281–290 (2017)

    Article  CAS  Google Scholar 

  44. X.Z. Li, M.Y. Zhang, L.L. Wu, Q.S. Fu, H. Gao, J. Alloys Compd. 773, 367–375 (2019)

    Article  CAS  Google Scholar 

  45. P. Zhang, J.Y. Zhou, W.J. Chen, Y.Y. Zhao, X.M. Mu, Z.X. Zhang, X.J. Pan, E.Q. Xie, Chem. Eng. J. 307, 687–695 (2017)

    Article  CAS  Google Scholar 

  46. P.J. Wang, H.R. Cai, X.L. Li, Y.F. Yang, G. Li, J.L. Xie, H.C. Xia, P.H. Sun, D.S. Zhang, J. Xiong, New J. Chem. 43, 7065–7073 (2019)

    Article  CAS  Google Scholar 

  47. W. Qin, J.L. Li, X.Y. Liu, N.F. Zhou, C. Wu, M. Ding, C.K. Jia, J. Colloid Interface Sci. 554, 125–132 (2019)

    Article  CAS  Google Scholar 

  48. D. Cheng, Y.F. Yang, J.L. Xie, C.J. Fang, G.Q. Zhang, J. Xiong, J. Mater. Chem. A 3, 14348–14357 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work was supported by the National Natural Science Foundation of China (No.52002099), young scientists foundation from Harbin University of Commerce, China (2019CX28), and the Young scientific research item of Harbin University of Commerce, Heilongjiang province, China (No.2019DS084).

Author information

Authors and Affiliations

Authors

Contributions

JW designed this experiment, carried out the electrochemical experiments, wrote the manuscript, and other analysis. CW and SW carried out the characterization tests, analyzed, wrote the results, and revised the manuscript. JC and XJ analyzed the characterization tests, wrote, and revised the manuscript. CW and JC analyzed and discussed the results.

Corresponding author

Correspondence to Jing Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, C., Wang, S. et al. A porous ZnCo2O4 nanosheets arrays as a binder-free electrode for high-performance flexible supercapacitor materials. J Mater Sci: Mater Electron 32, 25247–25257 (2021). https://doi.org/10.1007/s10854-021-06982-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06982-4

Navigation