Skip to main content
Log in

A branch-cut-and-price algorithm for optimal decoding in digital communication systems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Channel coding aims to minimize the errors that occur during the transmission of digital information from one place to another. Low-density parity-check codes can detect and correct transmission errors if one encodes the original information by adding redundant bits. In practice, heuristic iterative decoding algorithms are used to decode the received vector. However, these algorithms may fail to decode if the received vector contains multiple errors. We consider decoding the received vector with minimum error as an integer programming (IP) problem and propose a branch-and-price method for its solution. We improve the performance of our method by introducing heuristic feasible solutions and adding valid cuts to the mathematical formulation. Our computational experiments reveal that our branch-cut-and-price algorithm significantly improves solvability of the problem compared to a state-of-the-art IP decoder in the literature and has superior error performance than the conventional sum-product algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Arikan, E.: A performance comparison of polar codes and reed-Muller codes. IEEE Commun. Lett. 12(6), 447–449 (2008)

    Article  MathSciNet  Google Scholar 

  2. Barman, S., Liu, X., Draper, S.C., Recht, B.: Decomposition methods for large scale LP decoding. IEEE Trans. Inf. Theory 59(12), 7870–7886 (2013)

    Article  MathSciNet  Google Scholar 

  3. Berlekamp, E., McEliece, R., Van Tilborg, H.: On the inherent intractability of certain coding problems. IEEE Trans. Inf. Theory 24(3), 384–386 (1978)

    Article  MathSciNet  Google Scholar 

  4. Burshtein, D.: Iterative approximate linear programming decoding of LDPC codes with linear complexity. IEEE Trans. Inf. Theory 55(11), 4835–4859 (2009)

    Article  MathSciNet  Google Scholar 

  5. Chertkov, M., Stepanov, M.G.: An efficient pseudocodeword search algorithm for linear programming decoding of LDPC codes. IEEE Trans. Inf. Theory 54(4), 1514–1520 (2008)

    Article  MathSciNet  Google Scholar 

  6. Feldman, J., Wainwright, M.J., Karger, D.R.: Using linear programming to decode binary linear codes. IEEE Trans. Inf. Theory 51(3), 954–972 (2005)

    Article  MathSciNet  Google Scholar 

  7. Fossorier, M.P., Mihaljevic, M., Imai, H.: Reduced complexity iterative decoding of low-density parity check codes based on belief propagation. IEEE Trans. Commun. 47(5), 673–680 (1999)

    Article  Google Scholar 

  8. Gallager, R.: Low-density parity-check codes. IRE Trans. Inf. Theory 8(1), 21–28 (1962)

    Article  MathSciNet  Google Scholar 

  9. Hu, X.-Y., Eleftheriou, E., Arnold, D.-M., and Dholakia, A.:Efficient implementations of the sum-product algorithm for decoding LDPC codes. In: GLOBECOM’01. IEEE Global Telecommunications Conference (Cat. No. 01CH37270), vol. 2, pp. 1036–1036E. IEEE (2001)

  10. Karger, D.R., Oh, S., Shah, D.: Budget-optimal task allocation for reliable crowdsourcing systems. Oper. Res. 62(1), 1–24 (2014)

    Article  Google Scholar 

  11. Kschischang, F.R., Frey, B.J., Loeliger, H.-A., et al.: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 47(2), 498–519 (2001)

    Article  MathSciNet  Google Scholar 

  12. Lau, F. C., Mo, F., Tarn, W. M., Sham, C.-W.: Random-permutation-matrix-based cyclically-coupled LDPC codes. In: 2017 19th International Conference on Advanced Communication Technology (ICACT), pp. 497–500. IEEE (2017)

  13. Leiner, B.M.: LDPC codes—a brief tutorial. 8:1–9 (2005)

  14. Lübbecke, M.E.: Column generation. Wiley. In: Wiley Encyclopedia of Operations Research and Management Science (2010)

  15. Lübbecke, M.E., Desrosiers, J.: Selected topics in column generation. Oper. Res. 53(6), 1007–1023 (2005)

    Article  MathSciNet  Google Scholar 

  16. MacKay, D.J.: Good error-correcting codes based on very sparse matrices. IEEE Trans. Inf. Theory 45(2), 399–431 (1999)

    Article  MathSciNet  Google Scholar 

  17. MacKay, D.J.: Information Theory, Inference and Learning Algorithms. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  18. MacKay, D.J., Neal, R.M.: Near Shannon limit performance of low density parity check codes. Electron. Lett. 33(6), 457–458 (1997)

    Article  Google Scholar 

  19. Moon, T.K.: Error Correction Coding: Mathematical Methods and Algorithms. Wiley, New York (2005)

    Book  Google Scholar 

  20. Richardson, T.J., Urbanke, R.L.: The capacity of low-density parity-check codes under message-passing decoding. IEEE Trans. Inf. Theory 47(2), 599–618 (2001)

    Article  MathSciNet  Google Scholar 

  21. Sarajlić, M., Liu, L., and Edfors, O.: Reducing the complexity of LDPC decoding algorithms: An optimization-oriented approach. In: 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), pp. 861–866. IEEE (2014)

  22. Tanatmis, A., Ruzika, S., Hamacher, H.W., Punekar, M., Kienle, F., Wehn, N.: A separation algorithm for improved LP-decoding of linear block codes. IEEE Trans. Inf. Theory 56(7), 3277–3289 (2010)

    Article  MathSciNet  Google Scholar 

  23. Tanner, R.: A recursive approach to low complexity codes. IEEE Trans. Inf. Theory 27(5), 533–547 (1981)

    Article  MathSciNet  Google Scholar 

  24. Vontobel, P.O., Koetter, R.: On low-complexity linear-programming decoding of LDPC codes. Eur. Trans. Telecommun. 18(5), 509–517 (2007)

    Article  Google Scholar 

  25. Yang, K., Feldman, J., Wang, X.: Nonlinear programming approaches to decoding low-density parity-check codes. IEEE J. Sel. Areas Commun. 24(8), 1603–1613 (2006)

    Article  Google Scholar 

  26. Yang, K., Wang, X., Feldman, J.: A new linear programming approach to decoding linear block codes. IEEE Trans. Inf. Theory 54(3), 1061–1072 (2008)

    Article  MathSciNet  Google Scholar 

  27. Zhang, X., Siegel, P.H.: Adaptive cut generation algorithm for improved linear programming decoding of binary linear codes. IEEE Trans. Inf. Theory 58(10), 6581–6594 (2012)

    Article  MathSciNet  Google Scholar 

  28. Zhang, X., Siegel, P.H.: Efficient iterative LP decoding of LDPC codes with alternating direction method of multipliers. In: 2013 IEEE International Symposium on Information Theory, pp. 1501–1505. IEEE (2013)

Download references

Acknowledgements

This research has been supported by the Turkish Scientific and Technological Research Council with Grant No. 113M499.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banu Kabakulak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabakulak, B., Taşkın, Z.C. & Pusane, A.E. A branch-cut-and-price algorithm for optimal decoding in digital communication systems. J Glob Optim 81, 805–834 (2021). https://doi.org/10.1007/s10898-021-01073-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-021-01073-4

Keywords

Navigation