Skip to main content

Advertisement

Log in

Refinement of gravimetric geoid model by incorporating terrestrial, marine, and airborne gravity using KTH method

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

We compute a new gravimetric geoid model for Peninsular Malaysia (PMGG2020) based on the Royal Institute of Technology (KTH) method. The PMGG2020 was computed from 8474 terrestrial gravity points, satellite altimetry-derived gravity anomaly (DTU17), 24,855 airborne gravity data, and the TanDEM-X Digital Elevation Model. All the gravity datasets were combined and gridded onto a 1-min resolution using the 3D Least Square Collocation (LSC) method with EIGEN-6C4 as the reference field. GO_CONS_GCF_2_SPW_R4 was used to provide long wavelengths of gravity field up to 130 maximum degrees and order in the geoid computation. Based on an evaluation using 173 Global Navigation Satellite System (GNSS)-levelling points distributed over Peninsular Malaysia, the precision of the PMGG2020 was 0.058 m. It is almost identical to the accuracy of the official Peninsular Malaysia gravimetric geoid, WMG03A. Using airborne gravity, the precision of PMGG2020 showed a significant improvement of ~4 cm over the existing KTH-derived geoid model, PMSGM2014. These results highlight the significant effect of airborne gravity data on the accuracy of the geoid model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The terrestrial gravity, airborne gravity, GNSS levelling points, and official gravimetric geoid model over Peninsular Malaysia are provided by the Department of Survey and Mapping Malaysia (DSMM). Meanwhile, the PMSGM2014 gravimetric geoid model is from Universiti Teknologi MARA, Malaysia. The DTU17 marine gravity data over the study area are provided by Denmark’s National Space Institute (DTU Space) through Professor Ole Baltazar Andersen. The global geopotential models are available from http://icgem.gfz-potsdam.de/tom_longtime. The TanDEM-X DEM is provided by the German Aerospace Center (DLR) under the project―Towards 1 Centimetre Geoid Model at Southern Region Peninsular Malaysia Using New DEM Model—TanDEM-X‖ (Proposal ID: DEM_OTHER1156).

References

  • Abbak RA (2014) Effect of ASTER DEM on the prediction of mean gravity anomalies: a case study over the Auvergne test region. Acta Geodaetica et Geophysica 49(4):491–502

    Article  Google Scholar 

  • Abbak RA, Sjoberg LE, Ellmann A, Ustun A (2012a) A precise gravimetric geoid model in a mountainous area with scarce gravity data: a case study in Central Turkey. Stud Geophys Geod 56(4):909–927

    Article  Google Scholar 

  • Abbak RA, Erol B, Ustun A (2012b) Comparison of the KTH and remove-compute-restore techniques to geoid modelling in a mountainous area. Comput Geosci 48:31–40. https://doi.org/10.1016/j.cageo.2012.05.019

    Article  Google Scholar 

  • Abdalla A, (2009) Determination of a gravimetric geoid model of Sudan using the KTH method. Msc. Thesis, Royal Institute of Technology (KTH), Stockholm, Sweden.

  • Ågren J, (2004) Regional geoid determination methods for the era of satellite gravimetry numerical investigations using synthetic earth gravity models. PhD Thesis, Royal Institute of Technology (KTH), Stockholm, Sweden.

  • Ågren J, Sjöberg LE, (2014) Investigation of gravity data requirements for a 5 mm-quasigeoid model over Sweden. In International Association of Geodesy Symposia 141, 143–150. Springer Verlag. https://doi.org/10.1007/978-3-319-10837-7_18

  • Ågren J, Sjöberg LE, Kiamehr R (2009) The new gravimetric quasigeoid model KTH08 over Sweden. J Appl Geodesy 3(3):143–153. https://doi.org/10.1515/JAG.2009.015

    Article  Google Scholar 

  • Amos MJ (2007) Quasigeoid modelling in New Zealand to unify multiple local vertical datums. PhD Thesis, Curtin University of Technology.

  • Amos MJ, Featherstone W (2003) Comparisons of recent global geopotential models with terrestrial gravity field observations over New Zealand and Australia. Geomatics Res Australas 79:1–20

    Google Scholar 

  • Andersen OB, Knudsen P (2020) The DTU17 global marine gravity field: first validation results. Int Assoc Geodesy Symp 150:83–87. https://doi.org/10.1007/1345_2019_65

    Article  Google Scholar 

  • Bae TS, Lee J, Kwon JH, Hong CK (2012) Update of the precision geoid determination in Korea. Geophys Prospect 60(3):555–571. https://doi.org/10.1111/j.1365-2478.2011.01017.x

    Article  Google Scholar 

  • Bucha B, Janak J (2014) A MATLAB-based graphical user interface program for computing functionals of the geopotential up to ultra-high degrees and orders: efficient computation at irregular surfaces. Comput Geosci 66:219–227

    Article  Google Scholar 

  • Danila U (2012). Mold2012—a new gravimetric quasigeoid model over Moldova. Licentiate Thesis, Royal Institute of Technology (KTH), Stockholm, Sweden.

  • Ellmann A, Sjöberg LE (2004) Ellipsoidal correction for the modified stokes formula. Bollettino Di Geodesia e Scienze Affini 63(3):153–172

    Google Scholar 

  • Erol S, Özögel E, Kuçak RA, Erol B (2020) Utilizing airborne LiDAR and UAV photogrammetry techniques in local geoid model determination and validation. ISPRS Int J Geo Inf 9(9):528. MDPI AG. https://doi.org/10.3390/ijgi9090528

    Article  Google Scholar 

  • Featherstone WE, Kirby JF (2000) The reduction of aliasing in gravity anomalies and geoid heights using digital terrain data. Geophys J Int 141(1):204–212. https://doi.org/10.1046/j.1365-246X.2000.00082.x

    Article  Google Scholar 

  • Forsberg R, Olesen AV, Einarsson I, Manandhar N, Shreshta K (2014) Geoid of Nepal from airborne gravity survey. In International Association of Geodesy Symposia (Vol. 139, pp. 521–527). Springer Verlag. https://doi.org/10.1007/978-3-642-37222-3_69

  • Forsberg R, Tscherning CC (1981) The use of height data in gravity field approximation by collocation. J Geophys Res-Solid Earth 86(B9):7843–7854. https://doi.org/10.1029/JB086iB09p07843

    Article  Google Scholar 

  • Förste C, Bruinsma SL, Abrikosov O, Lemoine JM, Marty JC, Flechtner F, Balmino G, Barthelmes F, Biancale R (2014) EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services. https://doi.org/10.5880/icgem.2015.1

  • Geisser S, Eddy WF (1979) A predictive approach to model selection. Journal of the American Statistical Association 74(365):153–160

  • Gatti A, Reguzzoni M, Migliaccio F, Sanso F (2014) Space-wise grids of gravity gradients from GOCE data at nominal satellite altitude. Conference: 5th International GOCE User Workshop, 25-28 November 2014 at: UNESCO, Paris, France.

  • Gorokhovich Y, Voustianiouk A (2006) Accuracy assessment of the processed SRTM-based elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain characteristics. Remote Sens Environ 104(4):409–415. https://doi.org/10.1016/j.rse.2006.05.012

    Article  Google Scholar 

  • Halim SMA, Pa’suya MF, Narashid RH, Din AHM (2019) Accuracy assessment of TanDEM-X 90 m digital elevation model in east of Malaysia using GNSS/levelling. In ICSGRC 2019—2019 IEEE 10th Control and System Graduate Research Colloquium, Proceeding (pp. 88–93). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ICSGRC.2019.8837059

  • Holmes KW, Chadwick OA, Kyriakidis PC (2000) Error in a USGS 30-meter digital elevation model and its impact on terrain modeling. J Hydrol 233(1–4):154–173. https://doi.org/10.1016/S0022-1694(00)00229-8

    Article  Google Scholar 

  • Hsiao YS, Hwang C (2010) Topography-assisted downward continuation of airborne gravity: An application for geoid determination in Taiwan. Terrestrial, Atmospheric and Oceanic Sciences 21(4):627–637. https://doi.org/10.3319/TAO.2009.07.09.01(T)

  • Hsiao YS, Hwang C, Wu ML, Chang JC (2017) Improved geoid modeling using observed and modeled gravity gradients in Taiwan. J Surv Eng 143(2):04016027. https://doi.org/10.1061/(asce)su.1943-5428.0000212

    Article  Google Scholar 

  • Huang J, Véronneau M (2013) Canadian gravimetric geoid model 2010. J Geod 87(8):771–790. https://doi.org/10.1007/s00190-013-0645-0

    Article  Google Scholar 

  • Hwang C, Hsu HJ, Featherstone WE, Cheng CC, Yang M, Huang W, Su WY (2020) New gravimetric-only and hybrid geoid models of Taiwan for height modernisation, cross-island datum connection and airborne LiDAR mapping. J Geod 94(9):83. https://doi.org/10.1007/s00190-020-01412-5

    Article  Google Scholar 

  • Jalal SJ, Musa TA, Din AHM, Aris WAW, Shen W, Pa’suya MF (2019) Influencing factors on the accuracy of local geoid model. Geodesy Geodyn 10(6):439–445

    Article  Google Scholar 

  • Jalal SJ, Musa TA, Ameen TH, Din AHM, Aris WAW, Ebrahim JM (2020) Optimizing the global digital elevation models (GDEMs) and accuracy of derived DEMs from GPS points for Iraq’s mountainous areas. Geodesy Geodyn 11(5):338–349

    Article  Google Scholar 

  • Jamil H, Kadir M, Forsberg R, Olesen A, Isa MN, Rasidi S, Mohamed A, Chihat Z, Nielsen E, Majid F, Talib K, Aman S (2017) Airborne geoid mapping of land and sea areas of East Malaysia. J Geodetic Sci 7(1):151–161. https://doi.org/10.1515/jogs-2017-0010

    Article  Google Scholar 

  • Janák J, Vaníček P (2005) Mean free-air gravity anomalies in the mountains. Stud Geophys Geod 49(1):31–42. https://doi.org/10.1007/s11200-005-1624-6

    Article  Google Scholar 

  • Jekeli C (1978) An investigation of two models for the degree variances of global covariance functions, Report No. 275, Department of Geodetic Science, The Ohio State University.

  • Jekeli C, Rapp R (1980) Accuracy of the determination of mean anomalies and mean geoid undulations from a satellite gravity field mapping mission, Department of Geodetic Science, Report No. 307, The Ohio State University.

  • Jiang T (2018) On the contribution of airborne gravity data to gravimetric quasigeoid modelling: a case study over Mu Us area, China. Geophys J Int 215(2):1308–1321. https://doi.org/10.1093/GJI/GGY346

    Article  Google Scholar 

  • Kadir AMA, Fashir HH, Omar KM (1999) A regional gravimetric co-geoid over South East Asia. Geomatics Res Australas 71:37–56

    Google Scholar 

  • Kadir AMA, Ses S (1989) Towards the development of a national gravity database. The Professional Journal of the Institution of Surveyors Malaysia 24(4)

  • Kaula WM (1963) The investigation of the gravitational fields of the moon and planets with artificial satellites. Adv Space Sci Technol 5:210–226

    Google Scholar 

  • Kaula WM (1966) Theory of satellite geodesy. Blaisdell Publications, London

    Google Scholar 

  • Kiamehr R (2006) A hybrid precise gravimetric geoid model for Iran based on recent grace and SRTM data and the least squares modification of Stokes’s formula. J Earth Space Phys 32(1):7–23

    Google Scholar 

  • Kiamehr R (2007) A new height datum for Iran based on the combination of the gravimetric and geometric geoid models. Acta Geodaetica et Geophysica Hungarica 42(1):69–81. https://doi.org/10.1556/AGeod.42.2007.1.4

    Article  Google Scholar 

  • Kiamehr R, Eshagh M (2008) EGMlab, a scientific software for determining the gravity and gradient components from global geopotential models. Earth Science Informatics 1(2):93–103. https://doi.org/10.1007/s12145-008-0013-4

  • Kiamehr R, Sjöberg LE (2005) Effect of the SRTM global DEM on the determination of a high-resolution geoid model: a case study in Iran. J Geod 79(9):540–551. https://doi.org/10.1007/s00190-005-0006-8

    Article  Google Scholar 

  • Lee SB (2018) Determination of precise regional geoid heights on and around mount Jiri, South Korea. J Korean Soc Surv Geod Photogramm Cartogr 36(1):9–15. https://doi.org/10.7848/ksgpc.2018.36.1.9

    Article  Google Scholar 

  • Lee SB, Kim CY (2012) Development of regional gravimetric geoid model and comparison with EGM2008 gravity-field model over Korea. Sci Res Essays 7(3):387–397. https://doi.org/10.5897/SRE11.1681

    Article  Google Scholar 

  • Madon M (2017) A brief review of gravity and magnetic data for Malaysia. Warta Geol 43(2):41–49

    Google Scholar 

  • Matsuo K, Kuroishi Y (2020). Refinement of a gravimetric geoid model for Japan using GOCE and an updated regional gravity field model. Earth Planet Space 72(1). https://doi.org/10.1186/s40623-020-01158-6

  • Mc Cubbine J (2016) Airborne gravity across New Zealand—for an improved vertical datum. PhD Thesis, Victoria University of Wellington, New Zealand.

  • Mohamed A (2003) An Investigation of the Vertical Control Network in Penisular Malaysia using a Combination of Levelling, Gravity, GPS and Tidal Data. PhD Thesis, Universiti Teknologi Malaysia

  • Moritz H (1976) Covariance functions in least squares collocation. Report 240, Department of Geodetic Science, Ohio State University, Columbus

  • Moritz H (1977) On the computation of a global covariance model, Report 255, Department of Geodetic Science , Ohio State University, Columbus

  • Nordin AF, Abu SH, Hua CL, Nordin S (2005) Malaysia Precise Geoid (MyGEOID). Coordinates. Retrieved from https://mycoordinates.org/malaysia-precise-geoid-mygeoid/all/1/ (Accessed on 14 April 2020).

  • Odumosu JO, Nnam VC (2020) Gravity data requirements for decimetre accuracy regional geoid using Stokes’ remove compute restore technique in Nigeria. Contrib Geophys Geodesy 5(3):325–346. https://doi.org/10.31577/congeo.2020.50.3.3

    Article  Google Scholar 

  • Omar KM, Ses S, Mohamed A (2005) Enhancement of height system for Malaysia using space technology: the study of the datum bias inconsistencies in Peninsular Malaysia.

  • Pa’suya MF, Din AHM, Amin ZM, Rusli N, Othman AH, Aziz MAC, Samad MAA (2018) Accuracy assessment of TanDEM-X DEM and global geopotential models for geoid modeling in the southern region of Peninsular Malaysia. In Proceedings of the Second International Conference on the Future of ASEAN (ICoFA) 2017—Volume 2 (pp. 91–100). Springer Singapore. https://doi.org/10.1007/978-981-10-8471-3_9

  • Pa’suya MF, Din AHM, McCubbine JC, Omar AH, Amin ZM, Yahaya NAZ (2019a) Gravimetric geoid modelling over Peninsular Malaysia using two different gridding approaches for combining free air anomaly. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives (Vol. 42, pp. 515–522). International Society for Photogrammetry and Remote Sensing. https://doi.org/10.5194/isprs-archives-XLII-4-W16-515-2019

  • Pa’suya MF, Bakar AFA, Din AHM, Aziz MAC, Samad MAA, Mohamad MI (2019b) Accuracy assessment of the tandem-X DEM in the Northwestern Region of Peninsular Malaysia using GPS-levelling. ASM Sci J 12(Special Issue 2):100–106

    Google Scholar 

  • Piñón DA, Zhang K, Wu S, Cimbaro SR (2018) A new Argentinean gravimetric geoid model: GEOIDEAR. In International Association of Geodesy Symposia (Vol. 147, pp. 53–62). Springer Verlag. https://doi.org/10.1007/1345_2017_267

  • Schwarz KP, Sideris MG, Forsberg R (1990) The use of FFT techniques in physical geodesy. Geophys J Int 100(3):485–514. https://doi.org/10.1111/j.1365-246X.1990.tb00701.x

    Article  Google Scholar 

  • Sjöberg LE (1984) Least squares modification of Stokes’ and Vening Meinesz’ formulas by accounting for truncation and potential coefficient errors. Manuscr Geodaet 9:209–229

    Google Scholar 

  • Sjoberg LE (1986) Comparison of some methods of modifying Stokes’ formula. Bollettino Di Geodesia e Scienze Affini 45(3):229–248

    Google Scholar 

  • Sjöberg LE (1991) Refined least squares modification of Stokes’ formula. Manuscr Geodaet 16:367–375

    Google Scholar 

  • Sjöberg LE (2001) Topographic and atmospheric corrections of gravimetric geoid determination with special emphasis on the effects of harmonics of degrees zero and one. J Geod 75(5–6):288–290. https://doi.org/10.1007/s001900100174

    Article  Google Scholar 

  • Sjöberg LE (2003a) A computational scheme to model the geoid by the modified Stokes formula without gravity reductions. J Geod 77(7–8):423–432. https://doi.org/10.1007/s00190-003-0338-1

    Article  Google Scholar 

  • Sjöberg LE (2003b) A general model for modifying Stokes’ formula and its least-squares solution. J Geod 77(7–8):459–464. https://doi.org/10.1007/s00190-003-0346-1

    Article  Google Scholar 

  • Sjöberg LE (2003c) A solution to the downward continuation effect on the geoid determined by Stokes’ formula. J Geod 77(1–2):94–100. https://doi.org/10.1007/s00190-002-0306-1

    Article  Google Scholar 

  • Sjöberg LE (2007) The topographic bias by analytical continuation in physical geodesy. J Geod 81(5):345–350. https://doi.org/10.1007/s00190-006-0112-2

    Article  Google Scholar 

  • Sjöberg LE, Gidudu A, Ssengendo R (2015) The Uganda gravimetric geoid model 2014 computed by the KTH method. J Geodetic Sci 5(1). https://doi.org/10.1515/jogs-2015-0007

  • Ssengendo R (2015) A height datum for Uganda based on a gravimetric quasigeoid model and GNSS/levelling. PhD Thesis, Royal Institute of Technology (KTH), Stockholm, Sweden.

  • Sulaiman SA (2016) Gravimetric geoid model determination for Peninsular Malaysia using least squares modification of stokes. PhD Thesis, Universiti Teknologi MARA, Malaysia

  • Sulaiman SA, Talib K, Md Wazir MA, Yusof OM, Zalil SA (2012) Height discrepancies based on various vertical datum. 2012 IEEE Control and System Graduate Research Colloquium, Shah Alam, Selangor 2012:253–257. https://doi.org/10.1109/ICSGRC.2012.6287171

  • Tscherning C, Rapp RH (1974) Closed covariance expressions for gravity anomalies, geoid undulations, and deflections of the vertical implied by anomaly degree variance models. Report No 208.

  • Ulotu PE (2009) Geoid model of Tanzania from sparse and varying gravity data density by the KTH method. PhD Thesis, Royal Institute of Technology (KTH) , Stockholm, Sweden.

  • Ustun A, Abbak RA (2010) On global and regional spectral evaluation of global geopotential models. J Geophys Eng 7:369–379

    Article  Google Scholar 

  • Vaníček P, Sjöberg LE (1991) Reformulation of Stokes’s theory for higher than second-degree reference field and modification of integration kernels. J Geophys Res 96(B4):6529–6539. https://doi.org/10.1029/90JB02782

    Article  Google Scholar 

  • Varga M (2018) The application of crustal models in regional modelling of the earth’s gravity field. Phd. Thesis, University of Zagreb, Croatian.

  • Varga M, Bašić T (2018) Numerical investigation on the importance of digital elevation models in regional geoid modelling. IX Hotine-Marussi Symposium.18-22 June. Rome

  • Vella MNJP (2003) A new precise co-geoid determined by spherical FFT for the Malaysian peninsula. Earth, Planet Space 55(6):291–299. https://doi.org/10.1186/BF03351763

    Article  Google Scholar 

  • Véronneau M, Duval R, Huang J (2006) A gravimetric geoid model as a vertical datum in Canada. Geomatica 60(2):165–172

    Google Scholar 

  • Vignudelli S, Birol F, Benveniste J, Fu LL, Picot N, Raynal M, Roinard H (2019) Satellite altimetry measurements of sea level in the coastal zone. Surveys in Geophysics. Springer Netherlands. https://doi.org/10.1007/s10712-019-09569-1

  • Vu DT, Bruinsma S, Bonvalot S (2019) A high-resolution gravimetric quasigeoid model for Vietnam. Earth, Planet Space 71(1). https://doi.org/10.1186/s40623-019-1045-3

  • Wang YM, Li X, Ahlgren K, Krcmaric J (2020) Colorado geoid modeling at the US National Geodetic Survey. J Geod 94(10):106. https://doi.org/10.1007/s00190-020-01429-w

    Article  Google Scholar 

  • Wu Q, Wang H, Wang B, Chen S, Li H (2020) Performance comparison of geoid refinement between XGM2016 and EGM2008 based on the KTH and RCR methods: Jilin Province, China. Remote Sens 12(2):324. https://doi.org/10.3390/rs12020324

    Article  Google Scholar 

  • Yaacob N (2017) The Local Geoid Determination for Johor Region using Least-Squares Modification Of Stokes’ with Additive Correction. MSc Thesis, Universiti Teknologi Malaysia

  • Yang HJ (2013) Geoid Determination Based on a Combination of Terrestrial and Airborne Gravity Data in South Korea. Report No. 57, Geodetic Science, The Ohio State University Columbus, Ohio

  • Yildiz H, Forsberg R, Ågren J, Tscherning C, Sjöberg LE (2012) Comparison of remove-compute-restore and least squares modification of Stokes’ formula techniques to quasi-geoid determination over the Auvergne test area. J Geodetic Sci 2:53–64. https://doi.org/10.2478/v10156-011-0024-9

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks to the Department of Survey and Mapping Malaysia (DSMM) for providing terrestrial and airborne gravity data and GNSS levelling data over Peninsular Malaysia. The authors would also like to thank the German Aerospace Center (DLR) for providing the TanDEM-X DEM under the project―Towards 1 Centimetre Geoid Model at Southern Region Peninsular Malaysia using the New DEM Model—TanDEM-X‖ (Proposal ID: DEM_OTHER1156). We would further like to thank Jack McCubbine at Geoscience Australia for his constructive critique of this manuscript.

Funding

We thank the Ministry of Higher Education (MOHE), Malaysia, and Universiti Teknologi MARA (UiTM) for their financial funding through FRGS 2018 (Reference code: FRGS/1/2018/WAB08/UITM/03/1).

Author information

Authors and Affiliations

Authors

Contributions

MFP and AHMD designed the model and the computational framework. MHH and MYMY encouraged MFP to investigate the potential of the LSMSA method-derived geoid model over Peninsular Malaysia. MFP performed the calculations and analysed the data. AHMD supervised the findings of this work. RAA and AHMD discussed the results and commented on the manuscript. MFP wrote the manuscript with input from all authors. All authors were involved in discussions throughout the development.

Corresponding authors

Correspondence to Muhammad Faiz Pa’suya or Ami Hassan Md Din.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest. 

Additional information

Responsible Editor: Longjun Dong

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pa’suya, M.F., Din, A.H.M., Yusoff, M.Y.M. et al. Refinement of gravimetric geoid model by incorporating terrestrial, marine, and airborne gravity using KTH method. Arab J Geosci 14, 2003 (2021). https://doi.org/10.1007/s12517-021-08247-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-08247-0

Keywords

Navigation