Skip to main content

Advertisement

Log in

Clinical Manifestations of Pediatric Food Allergy: a Contemporary Review

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Food allergies (FAs) are an emerging health care issue, and a “second wave of the allergy epidemic” was named. There are extensive data that documented the prevalence rate as high as approximately 10%. FAs are immunological adverse reactions, including IgE-mediated mechanisms, cell-mediated mechanisms, or mixed IgE- and cell-mediated mechanisms. A diagnosis of FA is made by specific symptoms encounter with food, detailed past history, sensitization tests, and oral food challenges (OFCs) if necessary. The component-resolved diagnostics (CRD) test can distinguish true or cross-reaction. “Minimal elimination” from the results of CRD and OFC could avoid unnecessary food restriction. Strict food limitation is harsh and stressful on patients and their families. Children with FAs experience a higher rate of post-traumatic stress symptoms (PTSS) and bullying than others. In the last 20 years, oral immunotherapy (OIT), sublingual immunotherapy (SLIT), and epicutaneous immunotherapy (EPIT) are treatment strategies. OIT and EPIT are the most two encouraging treatments for FA. This review aims to introduce FAs in diverse clinical disorders, new perspectives, and their practical implications in diagnosing and treating FA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sicherer SH, Sampson HA (2018) Food allergy: a review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. J Allergy Clin Immunol 141(1):41–58. https://doi.org/10.1016/j.jaci.2017.11.003

    Article  CAS  PubMed  Google Scholar 

  2. Hossny E, Ebisawa M, EI-Gamal Y, Arasi S, Dahdah L, EI-Owaidy R, Galvan CA, Lee BW, Levin M, Martinez S, Pawankar R, LK Tangi M, Tham EH, Fiocchi A (2019) Challenges of managing food allergy in the developing world. World Allerg Organ 12(11):100089. https://doi.org/10.1016/j.waojou.2019.100089

    Article  CAS  Google Scholar 

  3. Costa C, Coimbra A, Vítor A, Aguiar R, Ferreira AL, Todo-Bom A (2020) Food allergy-from food avoidance to active treatment. Scand J Immunol 91(1):e12824. https://doi.org/10.1111/sji.12824

    Article  PubMed  Google Scholar 

  4. Sindher S, Long AJ, Purington N, Chollet M, Slatkin S, Andorf S, Tupa D, Kumar D, Woch MA, O’Laughlin KL, Assaad A, Pongracic J, Spergel JM, Tam J, Tilles S, Wang J, Galli SJ, Nadeau KC, Chinthrajah RS (2018) Analysis of a large standardized food challenge data set to determine predictors of positive outcome across multiple allergens. Front Immunol 27(9):2689. https://doi.org/10.3389/fimmu.2018.02689

    Article  CAS  Google Scholar 

  5. Osborne NJ, Koplin JJ, Martin PE, Gurrin LC, Lowe AJ, Matheson MC, Ponsonby AL, Wake M, Tang ML, Dharmage SC, Allen KJ, Investigators HealthNuts (2011) Prevalence of challenge-proven IgE-mediated food allergy using population-based sampling and predetermined challenge criteria in infants. J Allergy Clin Immunol 127(3):668–676. https://doi.org/10.1016/j.jaci.2011.01.039

    Article  CAS  PubMed  Google Scholar 

  6. Loh W, Tang MLK (2018) The epidemiology of food allergy in the global context. Int J Environ Res Public Health 15(9):2043. https://doi.org/10.3390/ijerph15092043

    Article  PubMed Central  Google Scholar 

  7. Tang R, Wang ZX, Ji CM, Leung PSC, Woo E, Chang C, Wang M, Liu B, Wei JF, Sun JL (2019) Regional differences in food allergies. Clin Rev Allergy Immunol 57(1):98–110. https://doi.org/10.1007/s12016-018-8725-9

    Article  PubMed  Google Scholar 

  8. Chafen JJ, Newberry SJ, Riedl MA, Bravata DM, Maglione M, Suttorp MJ, Sundaram V, Paige NM, Towfigh A, Hulley BJ, Shekelle PG (2010) Diagnosing and managing common food allergies: a systematic review. JAMA 303(18):1848–1856. https://doi.org/10.1001/jama.2010.582

    Article  PubMed  Google Scholar 

  9. Chan CF, Chen PH, Huang CF, Wu TC (2014) Emergency department visits for food allergy in Taiwan: a retrospective study. Pediatr Neonatol 55(4):275–281. https://doi.org/10.1016/j.pedneo.2013.11.006

    Article  PubMed  Google Scholar 

  10. Savage J, Sicherer S, Wood R (2016) The natural history of food allergy. J Allergy Clin Immunol Pract 4(2):196–203. https://doi.org/10.1016/j.jaip.2015.11.024

    Article  PubMed  Google Scholar 

  11. Stiefel G, Anagnostou K, Boyle RJ, Brathwaite N, Ewan P, Fox AT, Huber P, Luyt D, Till SJ, Venter C, Clark AT (2017) BSACI guideline for the diagnosis and management of peanut and tree nut allergy. Clin Exp Allergy 47:719–739. https://doi.org/10.1111/cea.12957

    Article  CAS  PubMed  Google Scholar 

  12. Brough HA, Liu AH, Sicherer S, Makinson K, Douiri A, Brown SJ, Stephens AC, Irwin McLean WH, Turcanu V, Wood RA, Jones SM, Burks W, Dawson P, Stablein D, Sampson H, Lack G (2015) Atopic dermatitis increases the effect of exposure to peanut antigen in dust on peanut sensitization and likely peanut allergy. J Allergy Clin Immunol 135(1):164–170. https://doi.org/10.1016/j.jaci.2014.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Galand C, Leyva-Castillo JM, Yoon J, Han A, Lee MS, McKenzie ANJ, Stassen M, Oyoshi MK, Finkelman FD, Geha RS (2016) IL-33 promotes food anaphylaxis in epicutaneously sensitized mice by targeting mast cells. J Allergy Clin Immunol 138(5):1356–1366. https://doi.org/10.1016/j.jaci.2016.03.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schmiechen ZC, Weissler KA, Frischmeyer-Guerrerio PA (2019) Recent developments in understanding the mechanisms of food allergy. Curr Opin Pediatr 31(6):807–814. https://doi.org/10.1097/MOP.0000000000000806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dolence JJ, Kobayashi T, Iijima K, Krempski J, Drake LY, Dent AL et al (2018) Airway exposure initiates peanut allergy by involving the IL-1 pathway and T follicular helper cells in mice. J Allergy Clin Immunol 142(4):1144–1158 e8. https://doi.org/10.1016/j.jaci.2017.11.020

  16. Smeekens JM, Immormino RM, Balogh PA, Randell SH, Kulis MD, Moran TP (2019) Indoor dust acts as an adjuvant to promote sensitization to peanut through the airway. Clin Exp Allergy 49(11):1500–1511. https://doi.org/10.1111/cea.13486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tordesillas L, Berin MC, Sampson HA (2017) Immunology of food allergy. Immunity 47:32–50. https://doi.org/10.1016/j.immuni.2017.07.004

    Article  CAS  PubMed  Google Scholar 

  18. Abdel-Gadir A, Stephen-Victor E, Gerber GK et al (2019) Microbiota therapy acts via a regulatory T cell MyD88/RORgammat pathway to suppress food allergy. Nat Med 25(7):1164–1174. https://doi.org/10.1038/s41591-019-0461-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Johnston LK, Chien KB, Bryce PJ (2014) The immunology of food allergy. J Immunol 192:2529–2534. https://doi.org/10.4049/jimmunol.1303026

    Article  CAS  PubMed  Google Scholar 

  20. Walker MT, Green JE, Ferrie RP, Queener AM, Kaplan MH, Cook-Mills JM (2018) Mechanism for initiation of food allergy: dependence on skin barrier mutations and environmental allergen costimulation. J Allergy Clin Immunol 141(5):1711-1725.e9. https://doi.org/10.1016/j.jaci.2018.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Suaini NHA, Wang Y, Soriano VX et al (2019) Genetic determinants of paediatric food allergy: a systematic review. Allergy 74(9):1631–1648. https://doi.org/10.1111/all.13767

    Article  PubMed  Google Scholar 

  22. Brown SJ, Asai Y, Cordell HJ, Campbell LE, Zhao Y, Liao H et al (2011) Loss-of-function variants in the filaggrin gene are a significant risk factor for peanut allergy. J Allergy Clin Immunol 127(3):661–667. Epub 2011/03/08. https://doi.org/10.1016/j.jaci.2011.01.031

  23. Ashley SE, Tan HT, Vuillermin P, Dharmage SC, Tang MLK, Koplin J et al (2017) The skin barrier function gene SPINK5 is associated with challenge-proven IgE-mediated food allergy in infants. Allergy 72(9):1356–1364. Epub 2017/02/19. https://doi.org/10.1111/all.13143

  24. Hong X, Hao K, Ladd-Acosta C, Hansen KD, Tsai HJ, Liu X, Xu X, Thornton TA, Caruso D, Keet CA et al (2015) Genome-wide association study identifies peanut allergy-specific loci and evidence of epigenetic mediation in US children. Nat Commun 6:6304. https://doi.org/10.1038/ncomms7304

    Article  CAS  PubMed  Google Scholar 

  25. Martino DJ, Ashley S, Koplin J, Ellis J, Saffery R, Dharmage SC, Gurrin L, Matheson MC, Kalb B, Marenholz I et al (2017) Genomewide association study of peanut allergy reproduces association with amino acid polymorphisms in HLA-DRB1. Clin Exp Allergy 47:217–223. https://doi.org/10.1111/cea.12863

    Article  CAS  PubMed  Google Scholar 

  26. Howell WM, Turner SJ, Hourihane JO et al (1998) HLA class II DRB1, DQB1 and DPB1 genotypic associations with peanut allergy: evidence from a family-based and case-control study. Clin Exp Allergy 28(2):156–162. https://doi.org/10.1046/j.1365-2222.1998.00224.x

    Article  CAS  PubMed  Google Scholar 

  27. Marenholz I, Grosche S, Kalb B et al (2017) Genome-wide association study identifies the SERPINB gene cluster as a susceptibility locus for food allergy. Nat Commun 8(1):1056. https://doi.org/10.1038/s41467-017-01220-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Khor SS, Morino R, Nakazono K, Kamitsuji S, Akita M, Kawajiri M, Yamasaki T, Kami A, Hoshi Y, Tada A, Ishikawa K, Hine M, Kobayashi M, Kurume N, Kamatani N, Tokunaga K, Johnson TA (2018) Genome-wide association study of self-reported food reactions in Japanese identifies shrimp and peach specific loci in the HLA-DR/DQ gene region. Sci Rep 8:1069. https://doi.org/10.1038/s41598-017-18241-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Noguchi E, Akiyama M, Yagami A et al (2019) (2019) HLA-DQ and RBFOX1 as susceptibility genes for an outbreak of hydrolyzed wheat allergy. J Allergy Clin Immunol 144(5):1354–1363. https://doi.org/10.1016/j.jaci.2019.06.034

    Article  CAS  PubMed  Google Scholar 

  30. Oropeza AR, Lassen A, Halken S, Bindslev-Jensen C, Mortz CG (2017) Anaphylaxis in an emergency care setting: a one year prospective study in children and adults. Scand J Trauma Resusc Emerg Med 25(1):111. https://doi.org/10.1186/s13049-017-0402-0

    Article  Google Scholar 

  31. Pouessel G, Claverie C, Labreuche J, Dorkenoo A, Renaudin JM, Eb M, Lejeune S, Deschildre A, Leteurtre S (2017) Fatal anaphylaxis in France: analysis of national anaphylaxis data, 1979–2011. J Allergy Clin Immunol 140(2):610–612. https://doi.org/10.1016/j.jaci.2017.02.014

    Article  PubMed  Google Scholar 

  32. Gupta RS, Warren CM, Smith BM et al (2019) Prevalence and severity of food allergies among US adults. JAMA Netw Open Jan 4:2(1):e185630. https://doi.org/10.1001/jamanetworkopen.2018.5630

  33. Pouessel G, Turner PJ, Worm M, Cardona V, Deschildre A, Beaudouin E, Renaudin JM, Demoly P, Tanno LK (2018) Food-induced fatal anaphylaxis: from epidemiological data to general prevention strategies. Clin Exp Allergy 48(12):1584–1593. https://doi.org/10.1111/cea.13287

    Article  PubMed  Google Scholar 

  34. Parrish CP, Kim H (2018) Food-induced anaphylaxis: an update. Curr Allergy Asthma Rep 18:41. https://doi.org/10.1007/s11882-018-0795-5

    Article  CAS  PubMed  Google Scholar 

  35. Turner PJ, Gowland MH, Sharma V, Ierodiakonou D, Harper N, Garcez T, Pumphrey R, Boyle RJ (2015) Increase in anaphylaxis-related hospitalizations but no increase in fatalities: an analysis of United Kingdom national anaphylaxis data, 1992–2012. J Allergy Clin Immunol 135(4):956–963. https://doi.org/10.1016/j.jaci.2014.10.021

    Article  PubMed  PubMed Central  Google Scholar 

  36. Boyce JA, Assa’ad A, Burks AW, Jones SM, Sampson HA, Wood RA, Plaut M, Cooper SF, Fenton MJ, Arshad SH, Bahna SL, Beck LA, Byrd-Bredbenner C, Camargo Jr CA, Eichenfield L, Furuta GT, Hanifin JM, Jones C, Kraft M, Levy BD, Lieberman P, Luccioli S, McCall KM, Schneider LC, Simon RA, Simons FE, Teach SJ, Yawn BP, Schwaninger JM, NIAID-Sponsored Expert Panel (2010) Guidelines for the diagnosis and management of food allergy in the United States: report of the NIAID-sponsored expert panel. J Allergy Clin Immunol 126(6):1105–1118. https://doi.org/10.1016/j.jaci.2010.10.008

    Article  Google Scholar 

  37. Turnbull JL, Adams HN, Gorard DA (2015) Review article: the diagnosis and management of food allergy and food intolerances. Aliment Pharmacol Ther 41(1):3–25. https://doi.org/10.1111/apt.12984

    Article  CAS  PubMed  Google Scholar 

  38. Boyce JA, Assa’ad A, Burks AW, Jones SM, Sampson HA, Wood RA, Plaut M, Cooper SF, Fenton MJ, Arshad SH, Bahna SL, Beck LA, Byrd-Bredbenner C, Camargo Jr CA, Eichenfield L, Furuta GT, Hanifin JM, Jones C, Kraft M, Levy BD, Lieberman P, Luccioli S, McCall KM, Schneider LC, Simon RA, Simons FE, Teach SJ, Yawn BP, Schwaninger JM, NIAID-sponsored Expert Panel (2011) Guidelines for the diagnosis and management of food allergy in the United States: summary of the NIAID-sponsored expert panel report. Nutrition 27(2):253–267. https://doi.org/10.1016/j.nut.2010.12.001

    Article  Google Scholar 

  39. Winberg A, West CE, Strinnholm A, Nordstrom L, Hedman L, Ronmark E (2015) Assessment of allergy to milk, egg, cod, and wheat in Swedish schoolchildren: a population based cohort study. PLoS One 10(7):e0131804. https://doi.org/10.1371/journal.pone.0131804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Flom JD, Scott H (2019) Sicherer epidemiology of cow’s milk allergy. Nutrients 11:1051. https://doi.org/10.3390/nu11051051

    Article  CAS  PubMed Central  Google Scholar 

  41. Sampson HA, Aceves S, Bock SA, James J, Jones S, Lang D, Nadeau K, Nowak-Wegrzyn A, Oppenheimer J, Perry TT, Randolph C, Sicherer SH, Simon RA, Vickery BP, Wood R; Joint Task Force on Practice Parameters, Bernstein D, Blessing-Moore J, Khan D, Lang D, Nicklas R, Oppenheimer J, Portnoy J, Randolph C, Schuller D, Spector S, Tilles SA, Wallace D; Practice Parameter Workgroup, Sampson HA, Aceves S, Bock SA, James J, Jones S, Lang D, Nadeau K, Nowak-Wegrzyn A, Oppenheimer J, Perry TT, Randolph C, Sicherer SH, Simon RA, Vickery BP, Wood R (2014) Food allergy: a practice parameter update-2014. J Allergy Clin Immunol 134(5):1016–1025 e43. https://doi.org/10.1016/j.jaci.2014.05.013

  42. Ebisawa M, Ito K, Fujisawa T (2017) Japanese guidelines for food allergy 2017. Allergol Int 66(2):248–264. https://doi.org/10.1016/j.alit.2017.02.001

  43. Sackesen C, Altintas DU, Bingol A, Bingol G, Buyuktiryaki B, Demir E, Kansu A, Kuloglu Z, Tamay Z, Sekerel BE (2019) Current trends in tolerance induction in cow’s milk allergy: from passive to proactive strategies. Front Pediatr 7:372. https://doi.org/10.3389/fped.2019.00372

    Article  PubMed  PubMed Central  Google Scholar 

  44. Nomura I, Morita H, Hosokawa S, Hoshina H, Fukuie T, Watanabe M, Ohtsuka Y, Shoda T, Terada A, Takamasu T, Arai K, Ito Y, Ohya Y, Saito H, Matsumoto K (2011) Four distinct subtypes of non-IgE-mediated gastrointestinal food allergies in neonates and infants, distinguished by their initial symptoms. J Allergy Clin Immunol 127(3):685–688. https://doi.org/10.1016/j.jaci.2011.01.019

    Article  CAS  PubMed  Google Scholar 

  45. Japanese Research Group for Neonatal, Infantile Allergic Disorders (2016) Japanese consensus recommendations for diagnosis and treatment of Non-IgE mediated Gastrointestinal Food Allergy in Neonates and Infants. [In Japanese] Available at http://nrichd.ncchd.go.jp/imal/FPIES/icho/pdf

  46. Connors L, O’Keefe A, Rosenfield L, Kim H (2018) Non-IgE-mediated food hypersensitivity. Allergy Asthma Clin Immunol 14:56. https://doi.org/10.1186/s13223-018-0285-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Agyemang A, Nowak-Wegrzyn A (2019) Food protein-induced enterocolitis syndrome: a comprehensive review. Clin Rev Allergy Immunol 57(2):261–271. https://doi.org/10.1007/s12016-018-8722-z

    Article  CAS  PubMed  Google Scholar 

  48. Ruffner MA, Spergel JM (2016) Non IgE-mediated food allergy syndromes. Ann Allergy Asthma Immunol 117(5):452–454. https://doi.org/10.1016/j.anai.2016.04.014

    Article  PubMed  PubMed Central  Google Scholar 

  49. Martin PE, Eckert JK, Koplin JJ, Lowe AJ, Gurrin LC, Dharmage SC, Vuillermin P, Tang ML, Ponsonby AL, Matheson M, Hill DJ, Allen KJ, HealthNuts Study Investigators (2015) Which infants with eczema are at risk of food allergy? Results from a population-based cohort. Clin Exp Allergy 45:255–264. https://doi.org/10.1111/cea.12406

    Article  Google Scholar 

  50. Ziyab AH (2019) Prevalence of food allergy among schoolchildren in Kuwait and its association with the coexistence and severity of asthma, rhinitis, and eczema: a cross-sectional study. World Allergy Organ J 12(4):100024. https://doi.org/10.1016/j.waojou.2019.100024

    Article  PubMed  PubMed Central  Google Scholar 

  51. Koutri E, Papadopoulou A (2018) Eosinophilic gastrointestinal diseases in childhood. Ann Nutr Metab 73(suppl 4):18–28. https://doi.org/10.1159/000493668

    Article  CAS  PubMed  Google Scholar 

  52. Chinthrajah RS, Tupa D, Prince BT, Block WM, Rosa JS, Singh AM, Nadeau K (2015) Diagnosis of food allergy. Pediatr Clin North Am 62(6):1393–1408. https://doi.org/10.1016/j.pcl.2015.07.009

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gómez-Aldana A, Jaramillo-Santos M, Delgado A, Jaramillo C, Lúquez-Mindiola A (2019) Eosinophilic esophagitis: current concepts in diagnosis and treatment. World J Gastroenterol 25(32):4598–4613. https://doi.org/10.3748/wjg.v25.i32.4598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ferguson AE, Mukkada VA, Fulkerson PC (2018) Pediatric eosinophilic esophagitis endotypes: are we closer to predicting treatment response? Clin Rev Allergy Immunol 55(1):43–55. https://doi.org/10.1007/s12016-017-8658-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Davis BP (2018) Pathophysiology of eosinophilic esophagitis. Clin Rev Allergy Immunol 55(1):19–42. https://doi.org/10.1007/s12016-017-8665-9

    Article  CAS  PubMed  Google Scholar 

  56. Burks AW, Tang M, Sicherer S, Muraro A, Eigenmann PA, Ebisawa M, Fiocchi A, Chiang W, Beyer K, Wood R, Hourihane J, Jones SM, Lack G, Sampson HA (2012) ICON: Food Allergy 129(4):906–920. https://doi.org/10.1016/j.jaci.2012.02.001

  57. Sampson HA (2016) Food allergy: past, present and future. Allergol Int 65(4):363–369. https://doi.org/10.1016/j.alit.2016.08.006

    Article  PubMed  Google Scholar 

  58. Hill DJ, Heine RG, Hosking CS (2004) The diagnostic value of skin prick testing in children with food allergy. Pediatr Allergy Immunol: official publication of the European Society of Pediatric Allergy and Immunology 15(5):435–441

    Article  Google Scholar 

  59. Weinberger T, Sicherer S (2018) Current perspectives on tree nut allergy: a review. J Asthma Allergy 26(11):41–51. https://doi.org/10.2147/JAA.S141636

    Article  Google Scholar 

  60. Oriel RC, Wang J (2019) Diagnosis and management of food allergy. Pediatr Clin N Am 66:941–954. https://doi.org/10.1016/j.pcl.2019.06.002

    Article  Google Scholar 

  61. Gomez F, Bogas G, Gonzalez M, Campo P, Salas M, Diaz-Perales A et al (2017) The clinical and immunological effects of Pru p 3 sublingual immunotherapy on peach and peanut allergy in patients with systemic reactions. Clin Exp Allergy 47:339–350. https://doi.org/10.1111/cea.12901

    Article  CAS  PubMed  Google Scholar 

  62. van Ree R, Vieths S, Poulsen LK (2006) Allergen-specific IgE testing in the diagnosis of food allergy and the event of a positive match in the bioinformatics search. Mol Nutr Food Res 50(7):645–654. https://doi.org/10.1002/mnfr.200500268

    Article  CAS  PubMed  Google Scholar 

  63. Mendes C, Costa J, Vicente AA, Oliveira MBPP, Mafra I (2019) Cashew nut allergy: clinical relevance and allergen characterisation. Clin Rev Allergy Immunol 57(1):1–22. https://doi.org/10.1007/s12016-016-8580-5

    Article  CAS  PubMed  Google Scholar 

  64. Volpicella M, Leoni C, Dileo MCG, Ceci LR (2019) Progress in the analysis of food allergens through molecular biology approaches. Cells 8(9):1073. https://doi.org/10.3390/cells8091073

    Article  CAS  PubMed Central  Google Scholar 

  65. Lupinek C, Wollmann E, Baar A, Banerjee S, Breiteneder H, Broecker BM, Bublin M, Curin M, Flicker S, Garmatiuk T, Hochwallner H, Mittermann I, Pahr S, Resch Y, Roux KH, Srinivasan B, Stentzel S, Vrtala S, Willison LN, Wickman M, Lødrup-Carlsen KC, Antó JM, Bousquet J, Bachert C, Ebner D, Schlederer T, Harwanegg C, Valenta R (2014) Advances in allergen-microarray technology for diagnosis and monitoring of allergy: the MeDALL allergen-chip. Methods 66(1):106–119. https://doi.org/10.1016/j.ymeth.2013.10.008

    Article  CAS  PubMed  Google Scholar 

  66. Sidbury R, Tom WL, Bergman JN, Cooper KD, Silverman RA, Berger TG, Chamlin SL, Cohen DE, Cordoro KM, Davis DM (2014) Guidelines of care for the management of atopic dermatitis: section 4. J Am Acad Dermatol 71(6):1218–1233. https://doi.org/10.1016/j.jaad.2014.08.038

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ando H, Movérare R, Kondo Y, Tsuge I, Tanaka A, Borres MP, Urisu A (2008) Utility of ovomucoid-specific IgE concentrations in predicting symptomatic egg allergy. J Allergy Clin Immunol 122(3):583–588. https://doi.org/10.1016/j.jaci.2008.06.016

    Article  CAS  PubMed  Google Scholar 

  68. Ebisawa M, Movérare R, Sato S, Borres MP, Ito K (2015) The predictive relationship between peanut- and Ara H 2-specific serum IgE concentrations and peanut allergy. J Allergy Clin Immunol Pract 3(1):131–132. https://doi.org/10.1016/j.jaip.2014.10.014

    Article  PubMed  Google Scholar 

  69. Ito K, Futamura M, Borres MP, Takaoka Y, Dahlstrom J, Sakamoto T, Tanaka A, Kohno K, Matsuo H, Morita E (2008) IgE antibodies to omega-5 gliadin associate with immediate symptoms on oral wheat challenge in Japanese children. Allergy 63(11):1536–1542. https://doi.org/10.1111/j.1398-9995.2008.01753.x

    Article  CAS  PubMed  Google Scholar 

  70. Ebisawa M, Shibata R, Sato S, Borres MP, Ito K (2012) Clinical utility of IgE antibodies to ω-5 gliadin in the diagnosis of wheat allergy: a pediatric multicenter challenge study. Int Arch Allergy Immunol 158(1):71–76. https://doi.org/10.1159/000330661

    Article  CAS  PubMed  Google Scholar 

  71. Masthoff LJ, Mattsson L, Zuidmeer-Jongejan L, Lidholm J, Andersson K, Akkerdaas JH, Versteeg SA, Garino C, Meijer Y, Kentie P, Versluis A, den Hartog Jager CF, Bruijnzeel-Koomen CA, Knulst AC, van Ree R, van Hoffen E, Pasmans SG (2013) Sensitization to Cor a 9 and Cor a 14 is highly specific for a hazelnut allergy with objective symptoms in Dutch children and adults. J Allergy Clin Immunol 132(2):393–399. https://doi.org/10.1016/j.jaci.2013.02.024

    Article  CAS  PubMed  Google Scholar 

  72. De Knop KJ, Verweij MM, Grimmelikhuijsen M, Philipse E, Hagendorens MM, Bridts CH, De Clerck LS, Stevens WJ, Ebo DG (2011) Age-related sensitization profiles for hazelnut (Corylus avellana) in a birch-endemic region. Pediatr Allergy Immunol 22(1 Pt 2):e139-149. https://doi.org/10.1111/j.1399-3038.2011.01112.x

    Article  PubMed  Google Scholar 

  73. Pastorello EA, Vieths S, Pravettoni V, Farioli L, Trambaioli C, Fortunato D, Lüttkopf D, Calamari M, Ansaloni R, Scibilia J, Ballmer-Weber BK, Poulsen LK, Wütrich B, Hansen KS, Robino AM, Ortolani C, Conti A (2002) Identification of hazelnut major allergens in sensitive patients with positive double-blind, placebo-controlled food challenge results. J Allergy Clin Immunol 109(3):563–570. https://doi.org/10.1067/mai.2002.121946

    Article  PubMed  Google Scholar 

  74. Inoue Y, Sato S, Takahashi K, Yanagida N, Yamamoto H, Shimizu N, Ebisawa M (2020) Component-resolved diagnostics can be useful for identifying hazelnut allergy in Japanese children. Allergol Int 69(2):239–245. https://doi.org/10.1016/j.alit.2019.10.00

    Article  CAS  PubMed  Google Scholar 

  75. Savvatianos S, Konstantinopoulos AP, Borgå Å, Stavroulakis G, Lidholm J, Borres MP, Manousakis E, Papadopoulos NG (2015) Sensitization to cashew nut 2S albumin, Ana O 3, is highly predictive of cashew and pistachio allergy in Greek children. J Allergy Clin Immunol 136(1):192–194. https://doi.org/10.1016/j.jaci.2015.03.037

    Article  CAS  PubMed  Google Scholar 

  76. Van der Valk JP, Gerth van Wijk R, Vergouwe Y, Steyerberg EW, Reitsma M, Wichers HJ, Savelkoul HF, Vlieg-Boerstra B, de Groot H, Dubois AE, de Jong NW (2017) Ana O 1, 2 and 3 accurately distinguish tolerant from allergic children sensitized to cashew nuts. Clin Exp Allergy 47(1):113–120. https://doi.org/10.1111/cea.12794

    Article  CAS  PubMed  Google Scholar 

  77. Lange L, Lasota L, Finger A, Vlajnic D, Büsing S, Meister J, Broekaert I, Pfannenstiel C, Friedrichs F, Price M, Trendelenburg V, Niggemann B, Beyer K (2017) Ana O 3-specific IgE is a good predictor for clinically relevant cashew allergy in children. Allergy 72(4):598–603. https://doi.org/10.1111/all.13050

    Article  CAS  PubMed  Google Scholar 

  78. Sato S, Fukuie T, Ito K, Imai T, Kondo Y, Kitabayashi T, Nagao M, Masumoto N, Ebisawa M (2019) Clinical utility of Jug r 1-specific IgE in diagnosis of walnut allergy. Jpn J Pediatr Allergy Clin Immunol 33:692–701

    Article  Google Scholar 

  79. Sato S, Yanagida N, Ebisawa M (2018) How to diagnose food allergy. Curr Opin Allergy Clin Immunol 18(3):214–221. https://doi.org/10.1097/ACI.0000000000000441

    Article  CAS  PubMed  Google Scholar 

  80. Fukutomi Y, Sjölander S, Nakazawa T, Borres MP, Ishii T, Nakayama S, Tanaka A, Taniguchi M, Saito A, Yasueda H, Nakamura H, Akiyama K (2012) Clinical relevance of IgE to recombinant Gly M 4 in the diagnosis of adult soybean allergy. J Allergy Clin Immunol 129(3):860–863. https://doi.org/10.1016/j.jaci.2012.01.031

    Article  CAS  PubMed  Google Scholar 

  81. Maruyama N, Nakagawa T, Ito K, Cabanos C, Borres MP, Movérare R, Tanaka A, Sato S, Ebisawa M (2016) Measurement of specific IgE antibodies to Ses i 1 improves the diagnosis of sesame allergy. Clin Exp Allergy 46:163–171. https://doi.org/10.1111/cea.12626

    Article  CAS  PubMed  Google Scholar 

  82. Maruyama N, Sato S, Yanagida N, Cabanos C, Ito K, Borres MP, Movérare R, Tanaka A, Ebisawa M (2016) Clinical utility of recombinant allergen components in diagnosing buckwheat allergy. J Allergy Clin Immunol Pract 4(2):322-323.e3. https://doi.org/10.1016/j.jaip.2015.11.028

    Article  PubMed  Google Scholar 

  83. Sicherer SH (2001) Clinical implications of cross-reactive food allergens. J Allergy Clin Immunol 108(6):881–890. https://doi.org/10.1067/mai.2001.118515

    Article  CAS  PubMed  Google Scholar 

  84. Kelso JM (2018) Unproven diagnostic tests for adverse reactions to foods. J Allergy Clin Immunol Pract 6(2):362–365. https://doi.org/10.1016/j.jaip.2017.08.021

    Article  PubMed  Google Scholar 

  85. Muraro A, Werfel T, Hoffmann-Sommergruber K, Roberts G, Beyer K, Bindslev-Jensen C, Cardona V, Dubois A, Dutoit G, Eigenmann P, Fernandez Rivas M, Halken S, Hickstein L, Høst A, Knol E, Lack G, Marchisotto MJ, Niggemann B, Nwaru BI, Papadopoulos NG, Poulsen LK, Santos AF, Skypala I, Schoepfer A, Van Ree R, Venter C, Worm M, Vlieg-Boerstra B, Panesar S, de Silva D, Soares-Weiser K, Sheikh A, Ballmer-Weber BK, Nilsson C, de Jong NW, Akdis CA, EAACI Food Allergy and Anaphylaxis Guidelines Group (2014) EAACI food allergy and anaphylaxis guidelines: diagnosis and management of food allergy. Allergy 69(8):1008–1025. https://doi.org/10.1111/all.12429

    Article  PubMed  Google Scholar 

  86. De Martinis M, Sirufo MM, Suppa M, Ginaldi L (2020) New perspectives in food allergy. Int J Mol Sci 21:1474. https://doi.org/10.3390/ijms21041474

    Article  CAS  PubMed Central  Google Scholar 

  87. Hemmings O, Kwok M, McKendry R, Santos AF (2018) Basophil activation test: old and new applications in allergy. Curr Allergy Asthma Rep 18:77. https://doi.org/10.1007/s11882-018-0831-5

    Article  PubMed  PubMed Central  Google Scholar 

  88. Hoffmann H, Santos A, Mayorga C et al (2015) The clinical utility of basophil activation testing in diagnosis and monitoring of allergic disease. Allergy 70(11):1393–1405. https://doi.org/10.1111/all.12698

    Article  CAS  PubMed  Google Scholar 

  89. Santos AF, Toit GD, O’Rourke C, Becares N, Couto-Francisco N, Radulovic S, Khaleva E, Basting M, Harris KM, Larson D, Sayre P, Plaut M, Roberts G, Bahnson HT, Lack G (2020) Biomarkers of severity and threshold of allergic reactions during oral peanut challenges. J Allergy Clin Immunol 146:344–355. https://doi.org/10.1016/j.jaci.2020.03.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Larsen LF, Juel-Berg N, Hansen KS et al (2018) A comparative study on basophil acti- vation test, histamine release assay, and passive sensitization histamine release assay in the diagnosis of peanut allergy. Allergy 73(1):137–144. https://doi.org/10.1111/all.13243

    Article  CAS  PubMed  Google Scholar 

  91. Santos AF, Shreffler WG (2017) Road map for the clinical application of the basophil activation test in food allergy. Clin Exp Allergy 47(9):1115–1124. https://doi.org/10.1111/cea.12964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Santos AF, Douiri A, Bécares N, Wu S-Y, Stephens A, Radulovic S et al (2014) Basophil activation test discriminates between allergy and tolerance in peanut-sensitized children. J Allergy Clin Immunol 134(3):645–652. https://doi.org/10.1016/j.jaci.2014.04.039

    Article  PubMed  PubMed Central  Google Scholar 

  93. Santos AF, Du Toit G, Douiri A et al (2015) Distinct parameters of the basophil activation test reflect the severity and threshold of allergic reactions to peanut. J Allergy Clin Immunol 135(1):179–186. https://doi.org/10.1016/j.jaci.2014.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tsai M, Mukai K, Chinthrajah RS, Nadeau KC, Galli SJ (2020) Sustained successful peanut oral immunotherapy associated with low basophil activation and peanut-specific IgE. J Allergy Clin Immunol 145(3):885–896 e886. https://doi.org/10.1016/j.jaci.2019.10.038

  95. Calvani M, Anania C, Cuomo B, D’Auria E, Decimo F, Indirli GC, Marseglia G, Mastrorilli V, Sartorio MUA, Santoro A, Veronelli E (2021) Non-IgE- or Mixed IgE/Non-IgE-mediated gastrointestinal food allergies in the first years of life: old and new tools for diagnosis. Nutrients 13:226. https://doi.org/10.3390/nu13010226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kimura M, Oh S, Narabayashi S, Taguchi T (2012) Usefulness of lymphocyte stimulation test for the diagnosis of intestinal cow’s milk allergy in infants. Int Arch Allergy Immunol 157(1):58–64. https://doi.org/10.1159/000323896

    Article  CAS  PubMed  Google Scholar 

  97. Kajita N, Yoshida K, Furukawa M, Akasawa A (2019) High stimulation index for quail egg yolk after an allergen-specific lymphocyte stimulation test in a child with quail egg induced food protein induced enterocolitis syndrome. J Investig Allergol Clin Immunol 29:66–68. https://doi.org/10.18176/jiaci.0334

    Article  CAS  PubMed  Google Scholar 

  98. Yagi H, Takizawa T, Sato K, Inoue T, Nishida Y, Yamada S, Ishige T, Hatori R, Inoue T, Yamada Y et al (2020) Interleukin 2 receptor-alpha expression after lymphocyte stimulation for non-IgE-mediated gastrointestinal food allergies. Allergol Int 69:287–289. https://doi.org/10.1016/j.alit.2019.11.003

    Article  PubMed  Google Scholar 

  99. Akuete K, Guffey D, Israelsen RB et al (2017) Multicenter prevalence of anaphylaxis in clinic-based oral food challenges. Ann Allergy Asthma Immunol 119(4):339-348.e1. https://doi.org/10.1016/j.anai.2017.07.028

    Article  PubMed  Google Scholar 

  100. Srisuwatchari W, Vichyanond P (2018) Oral food challenges: result of a 16-year experience at a major teaching hospital in Thailand. Asia Pac Allergy Apr 8(2):e21. https://doi.org/10.5415/apallergy.2018.8.e21

  101. Bock SA, Atkins FM (1990) Patterns of food hypersensitivity during sixteen years of double-blind, placebo- controlled food challenges. J Pediatr 117:561–567. https://doi.org/10.1016/s0022-3476(05)80689-4

    Article  CAS  PubMed  Google Scholar 

  102. Fleischer DM, Bock SA, Spears GC, Wilson CG, Miyazawa NK, Gleason MC, Gyorkos EA, Murphy JR, Atkins D, Leung DY (2011) Oral food challenges in children with a diagnosis of food allergy. J Pediatr 158:578-583.e1. https://doi.org/10.1016/j.jpeds.2010.09.027

    Article  PubMed  Google Scholar 

  103. Esteban CA, Shreffler WG, Virkud YV, Pistiner M (2020) Oral food challenge outcomes in children under 3 years of age. J Allergy Clin Immunol Pract Nov-Dec 8(10):3653-3656.e3. https://doi.org/10.1016/j.jaip.2020.06.035 (Epub 2020 Jun 27)

    Article  Google Scholar 

  104. Dang AT, Chundi PK, Mousa NA, Beyer AI, Chansakulporn S, Venter C, Mersha TB, Assa’ad AH (2020) The effect of age, sex, race/ethnicity, health insurance, and food specific serum immunoglobulin E on outcomes of oral food challenges. World Allergy Organ J 13(2):100100. https://doi.org/10.1016/j.waojou.2020.100100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Skypala IJ (2019) Food-induced anaphylaxis: role of hidden allergens and cofactors. Front Immunol 10:673. https://doi.org/10.3389/fimmu.2019.00673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Benito-Garcia F, Ansotegui IJ, Morais-Almeida M (2019) Diagnosis and prevention of food-dependent exercise-induced anaphylaxis. Expert Rev Clin Immunol 15:849–856. https://doi.org/10.1080/1744666X.2019.1642747

    Article  CAS  PubMed  Google Scholar 

  107. Christensen MJ, Eller E, Mortz CG, Brockow K, Bindslev-Jensen C (2019) Wheat-dependent cofactor-augmented anaphylaxis: a prospective study of exercise, aspirin, and alcohol efficacy as cofactors. J Allergy Clin Immunol Pract 7:114–121. https://doi.org/10.1016/j.jaip.2018.06.018

    Article  PubMed  Google Scholar 

  108. Okada Y, Yanagida N, Sato S, Ebisawa M (2016) Better management of wheat allergy using a very low-dose food challenge: a retrospective study. Allergol Int 65(1):82–87. https://doi.org/10.1016/j.alit.2015.07.011

    Article  CAS  PubMed  Google Scholar 

  109. Okada Y, Yanagida N, Sato S, Ebisawa M (2015) Better management of cow’s milk allergy using a very low dose food challenge test: a retrospective study. Allergol Int 64(3):272–276. https://doi.org/10.1016/j.alit.2015.04.002

    Article  CAS  PubMed  Google Scholar 

  110. Upton JEM, Bird JA (2020) Oral food challenges: special considerations. Ann Allergy Asthma Immunol 124(5):451–458. https://doi.org/10.1016/j.anai.2020.02.008

    Article  PubMed  Google Scholar 

  111. van Der Valk JPM, Gerth Van Wijk R, Vergouewe Y, De Jong NW (2015) Failure of introduction of food allergens after negative oral food challenge tests in children. Eur J Pediatr 174(8):1093–1099. https://doi.org/10.1007/s00431-015-2504-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Weinberger T, Rowland JC, Nowak-Wegrzyn A (2019) Food reintroduction rates following negative oral food challenges to peanut and hazelnut: a survey study. J Allergy Clin Immunol Pract 7(2):708–710. https://doi.org/10.1016/j.jaip.2018.10.031

    Article  PubMed  Google Scholar 

  113. Brooks CD, Melchert PJ, Stillerman A, Ott NL (2020) Reintroduction of foods after a negative oral food challenge: a 2-year follow-up. Ann Allergy Asthma Immunol 124(4):398–399. https://doi.org/10.1016/j.anai.2020.01.005

  114. Hobbs CB, Skinner AC, Burks AW, Vickery BP (2015) Food allergies affect growth in children. J Allergy Clin Immunol Pract 3(1):133–134. https://doi.org/10.1016/j.jaip.2014.11.004

    Article  PubMed  Google Scholar 

  115. Mehta H, Ramesh M, Feuille E, Groetch M, Wang J (2014) Growth comparison in children with and without food allergies in 2 different demographic populations. J Pediatr 165(4):842–848. https://doi.org/10.1016/j.jpeds.2014.06.003

    Article  PubMed  Google Scholar 

  116. Sova C, Feuling MB, Baumler M, Gleason L, Tam JS, Zafra H, Goday PS (2013) Systematic review of nutrient intake and growth in children with multiple IgE-mediated food allergies. Nutr Clin Pract 28(6):669–675. https://doi.org/10.1177/0884533613505870

    Article  PubMed  Google Scholar 

  117. Feng C, Kim JH (2019) Beyond avoidance: the psychosocial impact of food allergies. Clin Rev Allergy Immunol 57(1):74–82. https://doi.org/10.1007/s12016-018-8708-x

    Article  PubMed  Google Scholar 

  118. Annunziato RA, Rubes M, Ambrose MA, Mullarkey C, Shemesh E, Sicherer SH (2014) Longitudinal evaluation of food allergy-related bullying. J Allergy Clin Immunol Pract 2(5):639–641. https://doi.org/10.1016/j.jaip.2014.05.001

    Article  PubMed  Google Scholar 

  119. Fong AT, Katelaris CH, Wainstein B (2017) Bullying and quality of life in children and adolescents with food allergy. J Paediatr Child Health 53:630–635. https://doi.org/10.1111/jpc.13570

    Article  PubMed  Google Scholar 

  120. Fong AT, Katelaris CH, Wainstein BK (2018) Bullying in Australian children and adolescents with food allergies. Pediatr Allergy Immunol 29(7):740–746. https://doi.org/10.1111/pai.12955

    Article  PubMed  Google Scholar 

  121. Thörnqvist V, Middelveld R, Wai HM, Ballardini N, Nilsson E, Strömquist J, Ahlstedt S, Nilsson LJ, Protudjer JLP (2019) Health-related quality of life worsens by school age amongst children with food allergy. Clin Transl Allergy 7(9):10. https://doi.org/10.1186/s13601-019-0244-0

    Article  Google Scholar 

  122. Anvari S, Miller J, Yeh CY, Davis CM (2019) IgE-mediated food allergy. Clin Rev Allergy Immunol 57(2):244–260. https://doi.org/10.1007/s12016-018-8710-3

    Article  CAS  PubMed  Google Scholar 

  123. Chen M, Land M (2017) The current state of food allergy therapeutics. Hum Vaccin Immunother 13(10):2434–2442. https://doi.org/10.1080/21645515.2017.1359363

    Article  PubMed  PubMed Central  Google Scholar 

  124. Sampath V, Sindher SB, Zhang W, Nadeau KC (2018) New treatment directions in food allergy. Ann Allergy Asthma Immunol 120(3):254–262. https://doi.org/10.1016/j.anai.2018.01.004

    Article  PubMed  PubMed Central  Google Scholar 

  125. Du Toit G, Roberts G, Sayre PH, Bahnson HT, Radulovic S, Santos AF, Brough HA, Phippard D, Basting M, Feeney M et al (2015) Randomized trial of peanut consumption in infants at risk for peanut allergy. N Engl J Med 372:803–813. https://doi.org/10.1056/NEJMoa1414850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Togias A, Cooper SF, Acebal ML, Assa’ad A, Baker Jr JR, Beck LA, Block J, Byrd-Bredbenner C, Chan ES, Eichenfield LF et al (2017) Addendum guidelines for the prevention of peanut allergy in the United States: report of the National Institute of Allergy and Infectious Diseases-sponsored expert panel. J Allergy Clin Immunol 139:29–44. https://doi.org/10.1016/j.jaci.2016.10.010

    Article  PubMed  PubMed Central  Google Scholar 

  127. Fox AT, Sasieni P, du Toit G, Syed H, Lack G (2009) Household peanut consumption as a risk factor for the development of peanut allergy. J Allergy Clin Immunol 123(2):417–423. https://doi.org/10.1016/j.jaci.2008.12.014

  128. Du Toit G, Sayre PH, Roberts G, Sever ML, Lawson K, Bahnson HT et al (2016) Effect of avoidance on peanut allergy after early peanut consumption. N Engl J Med 374:1435–1443. https://doi.org/10.1056/NEJMoa1514209

    Article  CAS  PubMed  Google Scholar 

  129. Schroer B, Bjelac J (2019) Moving past “avoid all nuts”: individualizing management of children with peanut/tree nut allergies. Immunol Allergy Clin North Am 39:495–506. https://doi.org/10.1016/j.iac.2019.07.004

    Article  PubMed  Google Scholar 

  130. Perkin MR, Logan K, Tseng A, Raji B, Ayis S, Peacock J et al (2016) Randomized trial of introduction of allergenic foods in breast-fed infants. N Engl J Med 374:1733–1743. https://doi.org/10.1056/NEJMoa1514210

    Article  CAS  PubMed  Google Scholar 

  131. Natsume O, Kabashima S, Nakazato J, Yamamoto-Hanada K, Narita M, Kondo M et al (2017) Two-step egg introduction for prevention of egg allergy in high-risk infants with eczema (PETIT): a randomised, double-blind, placebo-controlled trial. Lancet 389:276–286. https://doi.org/10.1016/S0140-6736(16)31418-0

    Article  PubMed  Google Scholar 

  132. Palmer DJ, Metcalfe J, Makrides M, Gold MS, Quinn P, West CE et al (2013) Early regular egg exposure in infants with eczema: a randomized controlled trial. J Allergy Clin Immunol 132:387–392. https://doi.org/10.1016/j.jaci.2013.05.002

    Article  PubMed  Google Scholar 

  133. Bellach J, Schwarz V, Ahrens B, Trendelenburg V, Aksunger O, Kalb B et al (2017) Randomized placebo-controlled trial of hen’s egg consumption for primary prevention in infants. J Allergy Clin Immunol 139:1591–1599. https://doi.org/10.1016/j.jaci.2016.06.045

    Article  CAS  PubMed  Google Scholar 

  134. Palmer DJ, Sullivan TR, Gold MS, Prescott SL, Makrides M (2017) Randomized controlled trial of early regular egg intake to prevent egg allergy. J Allergy Clin Immunol 139:1600–1607. https://doi.org/10.1016/j.jaci.2016.06.052

    Article  CAS  PubMed  Google Scholar 

  135. Tan JWL, Valerio C, Barnes EH, Turner PJ, Van Asperen PA, Kakakios AM et al (2017) Beating Egg Allergy Trial (BEAT) study group. A randomized trial of egg introduction from 4 months of age in infants at risk for egg allergy. J Allergy Clin Immunol 139:1621–1628. https://doi.org/10.1016/j.jaci.2016.08.035

    Article  Google Scholar 

  136. Sakihara T, Otsuji K, Arakaki Y, Hamada K, Sugiura S, Ito K (2021) Randomized trial of early infant formula introduction to prevent cow’s milk allergy. J Allergy Clin Immunol 147(1):224–232 e8. https://doi.org/10.1016/j.jaci.2020.08.021

  137. Sirin Kose S, Asilsoy S, Uzuner N, Karaman O, Anal O (2019) Outcomes of baked milk and egg challenge in cow’s milk and hen’s egg allergy: can tolerance be predicted with allergen-specific IgE and prick-to-prick test? Int Arch Allergy Immunol 180(4):264–273. https://doi.org/10.1159/000502957

    Article  CAS  PubMed  Google Scholar 

  138. Upton J, Nowak-Wegrzyn A (2018) The impact of baked egg and baked milk diets on IgE- and non-IgE-mediated allergy. Clin Rev Allergy Immunol 55(2):118–138. https://doi.org/10.1007/s12016-018-8669-0

    Article  CAS  PubMed  Google Scholar 

  139. Venkataraman D, Soto-Ramirez N, Kurukulaaratchy RJ, Holloway JW, Karmaus W, Ewart SL, Arshad SH, Erlewyn-Lajeunesse M (2014) Filaggrin loss-of-function mutations are associated with food allergy in childhood and adolescence. J Allergy Clin Immunol 134(4):876–882. https://doi.org/10.1016/j.jaci.2014.07.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Simpson EL, Chalmers JR, Hanifin JM et al (2014) Emollient enhancement of the skin barrier from birth offers effective atopic dermatitis prevention. J Allergy Clin Immunol 134(4):818–823. https://doi.org/10.1016/j.jaci.2014.08.005

    Article  PubMed  PubMed Central  Google Scholar 

  141. Horimukai K, Morita K, Narita M et al (2014) Application of moisturizer to neonates prevents development of atopic dermatitis. J Allergy Clin Immunol 134(4):824–830. https://doi.org/10.1016/j.jaci.2014.07.060

    Article  PubMed  Google Scholar 

  142. Lowe AJ, Su JC, Allen KJ et al (2018) A randomized trial of a barrier lipid replacement strategy for the prevention of atopic dermatitis and allergic sensitization: the PEBBLES pilot study. Br J Dermatol 178(1):e19-21. https://doi.org/10.1111/bjd.15747

    Article  CAS  PubMed  Google Scholar 

  143. Perkin MR, Logan K, Marrs T, Radulovic S, Craven J, Boyle RJ, Chalmers JR, Williams HC, Versteeg SA, van Ree R, Lack G, Flohr C, EAT Study Team (2021) Association of frequent moisturizer use in early infancy with the development of food allergy. J Allergy Clin Immuno 147(3):967-976.e1. https://doi.org/10.1016/j.jaci.2020.10.044

    Article  Google Scholar 

  144. Dissanayake E, Tani Y, Nagai K, Sahara M, Mitsuishi C, Togawa Y, Suzuki Y, Nakano T, Yamaide F, Ohno H, Shimojo N (2019) Skin care and synbiotics for prevention of atopic dermatitis or food allergy in newborn infants: a 2 × 2 factorial, randomized, non-treatment controlled trial. Int Arch Allergy Immunol 180(3):202–211. https://doi.org/10.1159/000501636

    Article  PubMed  Google Scholar 

  145. Kelleher MM, Cro S, Cornelius V, Lodrup Carlsen KC, Skjerven HO, Rehbinder EM, Lowe AJ, Dissanayake E, Shimojo N, Yonezawa K, Ohya Y, Yamamoto-Hanada K, Morita K, Axon E, Surber C, Cork M, Cooke A, Tran L, Van Vogt E, Schmitt J, Weidinger S, McClanahan D, Simpson E, Duley L, Askie LM, Chalmers JR, Williams HC, Boyle RJ (2021) Skin care interventions in infants for preventing eczema and food allergy. Cochrane Database Syst Rev 2(2):CD013534. https://doi.org/10.1002/14651858.CD013534.pub2

  146. Chalmers JR, Haines RH, Bradshaw LE, Montgomery AA, Thomas KS, Brown SJ et al (2021) Daily emollient during infancy for prevention of eczema: the BEEP randomised controlled trial. Lancet 395(10228):962–972. https://doi.org/10.1016/S0140-6736(19)32984-8

    Article  Google Scholar 

  147. Skjerven HO, Rehbinder EM, Vettukattil R et al (2020) Skin emollient and early complementary feeding to prevent infant atopic dermatitis (PreventADALL): a factorial, multicentre, cluster-randomised trial. Lancet 395(10228):951–961. https://doi.org/10.1016/S0140-6736(19)32983-6

    Article  PubMed  Google Scholar 

  148. Yamamoto-Hanada K, Kobayashi T, Williams HC, Mikami M, Saito-Abe M, Morita K, Natsume O, Sato M, Iwama M, Miyaji Y, Miyata M, Inagaki S, Tatsuki F, Masami N, Nakayama SF, Kido H, Saito H, Ohya Y (2018) Early aggressive intervention for infantile atopic dermatitis to prevent development of food allergy: a multicenter, investigator-blinded, randomized, parallel group controlled trial (PACI Study)-protocol for a randomized controlled trial. Clin Transl Allergy 23(8):47. https://doi.org/10.1186/s13601-018-0233-8

    Article  CAS  Google Scholar 

  149. Obbagy JE, English LK, Wong YP, Butte NF, Dewey KG, Fleischer DM, Fox MK, Greer FR, Krebs NF, Scanlon KS, Stoody EE (2019) Complementary feeding and food allergy, atopic dermatitis/eczema, asthma, and allergic rhinitis: a systematic review. Am J Clin Nutr 109(Suppl):890S-934S. https://doi.org/10.1093/ajcn/nqy220

    Article  PubMed  Google Scholar 

  150. Fujimura T, Lum SZC, Nagata Y, Kawamoto S, Oyoshi MK (2019) Influences of maternal factors over offspring allergies and applications for food allergy. Front Immunol 23(10):1933. https://doi.org/10.3389/fimmu.2019.01933

    Article  CAS  Google Scholar 

  151. Głobińska A, Boonpiyathad T, Satitsuksanoa P, Kleuskens M, van de Veen W, Sokolowska M, Akdis M (2018) Mechanisms of allergen-specific immunotherapy: diverse mechanisms of immune tolerance to allergens. Ann Allergy Asthma Immunol 121(3):306–312. https://doi.org/10.1016/j.anai.2018.06.026

    Article  CAS  PubMed  Google Scholar 

  152. Venter C, Eyerich S, Sarin T, Klatt KC (2020) Nutrition and the immune system: a complicated tango. Nutrients 12(3):818. https://doi.org/10.3390/nu12030818

    Article  CAS  PubMed Central  Google Scholar 

  153. Venter C, Maslin K, Dean T, Holloway J, Silveira L, Fleischer D, Dean T, Arshad H (2020) Different measures of dietary diversity during infancy and the association with childhood food allergy in a UK birth cohort study. J Allergy Clin Immunol Pract 8(6):2017–2026. https://doi.org/10.1016/j.jaip.2020.01.029

    Article  PubMed  Google Scholar 

  154. Venter C, Groetch M, Netting M, Meyer R (2018) A patient-specific approach to develop an exclusion diet to manage food allergy in infants and children. Clin Exp Allergy 48(2):121–137. https://doi.org/10.1111/cea.13087

    Article  CAS  PubMed  Google Scholar 

  155. Lam HY, Tergaonkar V, Ahn KS (2020) Mechanisms of allergen-specific immunotherapy for allergic rhinitis and food allergies. Biosci Rep 40(4):BSR20200256. https://doi.org/10.1042/BSR20200256

  156. de Quiros EB, Seoane-Reula E, Alonso-Lebrero E, Pion M, Correa-Rocha R (2018) The role of regulatory T cells in the acquisition of tolerance to food allergens in children. Allergol Immunopathol (Madr) 46(6):612–618. https://doi.org/10.1016/j.aller.2018.02.002

    Article  Google Scholar 

  157. Mucida D (2005) Oral tolerance in the absence of naturally occurring Tregs. J Clin Invest 115(7):1923–1933. https://doi.org/10.1172/JCI24487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Torgerson TR, Linane A, Moes N et al (2007) Severe food allergy as a variant of IPEX syndrome caused by a deletion in a noncoding region of the FOXP3 gene. Gastroenterology 132(5):1705–1717. https://doi.org/10.1053/j.gastro.2007.02.044

    Article  CAS  PubMed  Google Scholar 

  159. Dantzer JA, Wood RA (2019) Next-generation approaches for the treatment of food allergy. Curr Allergy Asthma Rep 19(1):5. https://doi.org/10.1007/s11882-019-0839-5

    Article  PubMed  Google Scholar 

  160. Senti G, von Moos S, Kundig TM (2011) Epicutaneous allergen administration: is this the future of allergen-specific immunotherapy? Allergy 66(6):798–809. https://doi.org/10.1111/j.1398-9995.2011.02560.x

    Article  CAS  PubMed  Google Scholar 

  161. Lanser BJ, Leung DYM (2018) The current state of epicutaneous immunotherapy for food allergy: a comprehensive review. Clin Rev Allergy Immunol 55(2):153–161. https://doi.org/10.1007/s12016-017-8650-3

    Article  CAS  PubMed  Google Scholar 

  162. Gernez Y, Nowak-Węgrzyn A (2017) Immunotherapy for food allergy: are we there yet? J Allergy Clin Immunol Pract 5(2):250–272. https://doi.org/10.1016/j.jaip.2016.12.004

    Article  PubMed  Google Scholar 

  163. Yue D, Ciccolini A, Avilla E, Waserman S (2018) Food allergy and anaphylaxis. J Asthma Allergy 20(11):111–120. https://doi.org/10.2147/JAA.S162456

    Article  Google Scholar 

  164. Virkud YV, Wang J, Wayne G (2018) Shreffler enhancing the safety and efficacy of food allergy immunotherapy: a review of adjunctive therapies. Clin Rev Allergy Immunol 55(2):172–189. https://doi.org/10.1007/s12016-018-8694-z

    Article  CAS  PubMed  Google Scholar 

  165. Chinthrajah RS, Purington N, Andorf S, Long A, O’Laughlin KL, Lyu SC, Manohar M, Boyd SD, Tibshirani R, Maecker H, Plaut M, Mukai K, Tsai M, Desai M, Galli SJ, Nadeau KC (2019) Sustained outcomes in oral immunotherapy for peanut allergy (POISED study): a large, randomised, double-blind, placebo-controlled, phase 2 study. Lancet 394(10207):1437–1449. https://doi.org/10.1016/S0140-6736(19)31793-3

    Article  PubMed  PubMed Central  Google Scholar 

  166. Kobernick AK, Burks AW (2016) Active treatment for food allergy. Allergol Int 65(4):388–395. https://doi.org/10.1016/j.alit.2016.08.002

    Article  CAS  PubMed  Google Scholar 

  167. Bégin P, Winterroth LC, Dominguez T, Wilson SP, Bacal L, Mehrotra A, Kausch B, Trela A, Hoyte E, O’Riordan G, Seki S, Blakemore A, Woch M, Hamilton RG, Nadeau KC (2014) Safety and feasibility of oral immunotherapy to multiple allergens for food allergy. Allergy Asthma Clin Immunol 10(1):1. https://doi.org/10.1186/1710-1492-10-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Bégin P, Dominguez T, Wilson SP, Bacal L, Mehrotra A, Kausch B, Trela A, Tavassoli M, Hoyte E, O’Riordan G, Blakemore A, Seki S, Hamilton RG, Nadeau KC (2014) Phase 1 results of safety and tolerability in a rush oral immunotherapy protocol to multiple foods using omalizumab. Allergy Asthma Clin Immunol 10(1):7. https://doi.org/10.1186/1710-1492-10-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Nicolaides RE, Parrish CP, Andrew Bird J (2020) Food allergy immunotherapy with adjuvants. Immunol Allergy Clin N Am 40:149–173. https://doi.org/10.1016/j.iac.2019.09.004

    Article  Google Scholar 

  170. Kim EH, Yang L, Ye P, Guo R, Li Q, Kulis MD, Burks AW (2019) Long-term sublingual immunotherapy for peanut allergy in children: clinical and immunologic evidence of desensitization. J Allergy Clin Immunol 144(5):1320-1326.e1. https://doi.org/10.1016/j.jaci.2019.07.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Bindslev-Jensen C, de Kam PJ, van Twuijver E, Boot DB, El Galta R, Mose AP et al (2017) SCIT-treatment with a chemically modified, aluminum hydroxide adsorbed peanut extract (HAL-MPE1) was generally safe and well tolerated and showed immunological changes in peanut allergic patients. J Allergy Clin Immunol 139(2, Supplement):AB191. https://doi.org/10.1016/j.jaci.2016.12.623

  172. Li XM, Song Y, Su Y, Heiland T, Sampson HA (2015) Immunization with ARA h1, 2,3-LAMP-Vax peanut vaccine blocked IgE mediated-anaphylaxis in a peanut allergic murine model. J Allergy Clin Immunol 135(2):AB167. https://doi.org/10.1016/j.jaci.2014.12.1482

  173. Vickery BP, Berglund JP, Burk CM, Fine JP, Kim EH, Kim JI, Keet CA, Kulis M, Orgel KG, Guo R et al (2017) Early oral immunotherapy in peanut-allergic preschool children is safe and highly effective. J Allergy Clin Immunol 139(1):173-181.e8. https://doi.org/10.1016/j.jaci.2016.05.027

    Article  CAS  PubMed  Google Scholar 

  174. Palisade Group of Clinical Investigators, Vickery BP, Vereda A, Casale TB et al (2018) AR101 oral immunotherapy for peanut allergy. N Engl J Med 379(21):1991–2001. https://doi.org/10.1056/NEJMoa1812856

    Article  Google Scholar 

  175. Vickery BP, Vereda A, Nilsson C, du Toit G, Shreffler WG, Burks AW, Jones SM, Fernández-Rivas M, Blümchen K, Hourihane JOB, Beyer K, Smith A, Ryan R, Adelman DC (2021) Continuous and daily oral immunotherapy for peanut allergy: results from a 2-year open-label follow-on study. J Allergy Clin Immunol Pract 9(5):1879-1889.e14. https://doi.org/10.1016/j.jaip.2020.12.029

    Article  PubMed  Google Scholar 

  176. Lucendo AJ, Arias A, Tenias JM (2014) Relation between eosinophilic esophagitis and oral immunotherapy for food allergy: a systematic review with meta-analysis. Ann Allergy Asthma Immunol 113(6):624–629. https://doi.org/10.1016/j.anai.2014.08.004

    Article  PubMed  Google Scholar 

  177. Nagakura KI, Yanagida N, Sato S, Nishino M, Takahashi K, Asaumi T, Ogura K, Ebisawa M (2020) Low-dose-oral immunotherapy for children with wheat-induced anaphylaxis. Pediatr Allergy Immunol 31(4):371–379. https://doi.org/10.1111/pai.13220

    Article  PubMed  Google Scholar 

  178. Takaoka Y, Maeta A, Takahashi K, Ito YM, Takahashi S, Muroya T, Shigekawa A, Tsurinaga Y, Iba N, Yoshida Y, Kameda M, Doi S (2019) Effectiveness and safety of double-blinded, placebo-controlled, low-dose oral immunotherapy with low allergen egg-containing cookies for severe hen’s egg allergy: a single-center analysis. Int Arch Allergy Immunol 180(4):244–249. https://doi.org/10.1159/000502956

  179. Yanagida N, Sato S, Asaumi T, Nagakura K, Ogura K, Ebisawa M (2016) Safety and efficacy of low-dose oral immunotherapy for hen’s egg allergy in children. Int Arch Allergy Immunol 171:265–268. https://doi.org/10.1159/000454807

    Article  CAS  PubMed  Google Scholar 

  180. Yanagida N, Okada Y, Sato S, Ebisawa M (2016) New approach for food allergy management using low-dose oral food challenges and low-dose oral immunotherapies. Allergol Int 65(2):135–140. https://doi.org/10.1016/j.alit.2015.10.010

    Article  CAS  PubMed  Google Scholar 

  181. Blumchen K, Trendelenburg V, Ahrens F et al (2019) Efficacy, safety, and quality of life in a multicenter, randomized, placebo-controlled trial of low-dose peanut oral immunotherapy in children with peanut allergy. J Allergy Clin Immunol Pract 7:479-491.e410. https://doi.org/10.1016/j.jaip.2018.10.048

    Article  PubMed  Google Scholar 

  182. Fiocchi A, Artesani MC, Riccardi C et al (2019) Impact of omalizumab on food allergy in patients treated for asthma: a real-life study. J Allergy Clin Immunol Pract 7(6):1901-1909.e5. https://doi.org/10.1016/j.jaip.2019.01.023

    Article  PubMed  Google Scholar 

  183. Savage JH, Courneya JP, Sterba PM et al (2012) Kinetics of mast cell, basophil, and oral food challenge responses in omalizumab-treated adults with peanut allergy. J Allergy Clin Immunol 130(5):1123-1129.e2. https://doi.org/10.1016/j.jaci.2012.05.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Andorf S, Purington N, Kumar D, Long A, O’Laughlin KL, Sicherer S et al (2019) A phase 2 randomized controlled multisite study using omalizumab-facilitated rapid desensitization to test continued vs. discontinued dosing in multifood allergic individuals. E Clin Med 7:27–38. https://doi.org/10.1016/j.eclinm.2018.12.006

    Article  Google Scholar 

  185. Schneider LC, Rachid R, LeBovidge J, Blood E, Mittal M, Umetsu DT (2013) A pilot study of omalizumab to facilitate rapid oral desensitization in high-risk peanut-allergic patients. J Allergy Clin Immunol 132:1368–1374. https://doi.org/10.1016/j.jaci.2013.09.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Nadeau KC, Schneider LC, Hoyte L, Borras I, Umetsu DT (2011) Rapid oral desensitization in combination with omalizumab therapy in patients with cow’s milk allergy. J Allergy Clin Immunol 127:1622–1624. https://doi.org/10.1016/j.jaci.2011.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Wood RA, Kim JS, Lindblad R, Nadeau K, Henning AK, Dawson P et al (2016) A randomized, double-blind, placebo-controlled study of omalizumab combined with oral immunotherapy for the treatment of cow’s milk allergy. J Allergy Clin Immunol 137:1103–1110. https://doi.org/10.1016/j.jaci.2015.10.005

    Article  CAS  PubMed  Google Scholar 

  188. MacGinnitie AJ, Rachid R, Gragg H, Little SV, Lakin P, Cianferoni A et al (2017) Omalizumab facilitates rapid oral desensitization for peanut allergy. J Allergy Clin Immunol 139:873–881. https://doi.org/10.1016/j.jaci.2016.08.010

    Article  CAS  PubMed  Google Scholar 

  189. Albuhairi S, Rachid R (2020) Novel therapies for treatment of food allergy. Immunol Allergy Clin North Am 40(1):175–186. https://doi.org/10.1016/j.iac.2019.09.007

    Article  PubMed  Google Scholar 

  190. Rial MJ, Barroso B, Sastre J (2019) Dupilumab for treatment of food allergy. J Allergy Clin Immunol Pract 7(2):673–674. https://doi.org/10.1016/j.jaip.2018.07.02

    Article  PubMed  Google Scholar 

  191. Dupont C, Kalach N, Soulaines P, Legoué-Morillon S, Piloquet H, Benhamou PH (2010) Cow’s milk epicutaneous immunotherapy in children: a pilot trial of safety, acceptability, and impact on allergic reactivity. J Allergy Clin Immunol 125:1165–1167. https://doi.org/10.1016/j.jaci.2010.02.029

    Article  CAS  PubMed  Google Scholar 

  192. Jones SM, Agbotounou WK, Fleischer DM, Burks AW, Pesek RD, Harris MW et al (2016) Safety of epicutaneous immunotherapy for the treatment of peanut allergy: a phase 1 study using the Viaskin patch. J Allergy Clin Immunol 137:1258–1261. https://doi.org/10.1016/j.jaci.2016.01.008

    Article  PubMed  Google Scholar 

  193. Jones SM, Sicherer SH, Burks AW, Leung DYM, Lindblad RW, Dawson P et al (2017) Epicutaneous immunotherapy for the treatment of peanut allergy in children and young adults. J Allergy Clin Immunol 139:1242-1252.e9. https://doi.org/10.1016/j.jaci.2016.08.017

    Article  CAS  PubMed  Google Scholar 

  194. Sampson HA, Shreffler WG, Yang WH, Sussman GL, Brown-Whitehorn TF, Nadeau KC et al (2017) Effect of varying doses of epicutaneous immunotherapy vs placebo on reaction to peanut protein exposure among patients with peanut sensitivity: a randomized clinical trial. JAMA 318:1798–1809. https://doi.org/10.1001/jama.2017.16591

    Article  PubMed  PubMed Central  Google Scholar 

  195. Fleischer DM, Greenhawt M, Sussman G, Begin P, Nowak-Wegrzyn A, Petroni D et al (2019) Effect of epicutaneous immunotherapy vs placebo on reaction to peanut protein ingestion among children with peanut allergy: the PEPITES randomized clinical trial. JAMA 12;321(10):946–955. https://doi.org/10.1001/jama.2019.1113

  196. Fleischer DM, Shreffler WG, Campbell DE, Green TD, Anvari S, Assa’ad A et al (2020) Long-term, open-label extension study of the efficacy and safety of epicutaneous immunotherapy for peanut allergy in children: PEOPLE 3-year results. J Allergy Clin Immunol 146(4):863–874. https://doi.org/10.1016/j.jaci.2020.06.028

    Article  CAS  PubMed  Google Scholar 

  197. Dioszeghy V, Mondoulet L, Puteaux E, Dhelft V, Ligouis M, Plaquet C et al (2017) Differences in phenotype, homing properties and suppressive activities of regulatory T cells induced by epicutaneous, oral or sublingual immunotherapy in mice sensitized to peanut. Cell Mol Immunol 14:770–782. https://doi.org/10.1038/cmi.2016.14

    Article  CAS  PubMed  Google Scholar 

  198. Marcucci F, Isidori C, Argentiero A, Neglia C, Esposito S (2020) Therapeutic perspectives in food allergy. J Transl Med 18(1):302. https://doi.org/10.1186/s12967-020-02466-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Kim EH, Burks AW (2020) Food allergy immunotherapy: oral immunotherapy and epicutaneous immunotherapy. Allergy 5(6):1337–1346. https://doi.org/10.1111/all.14220

    Article  Google Scholar 

  200. Baker MG, Wang J (2019) Could this be IT? Epicutaneous, sublingual, and subcutaneous immunotherapy for the treatment of food allergies. Curr Allergy Asthma Rep 19(11):53. https://doi.org/10.1007/s11882-019-0885-z

    Article  CAS  PubMed  Google Scholar 

  201. Purington N, Chinthrajah RS, Long A, Sindher S, Andorf S, O’Laughlin K, Woch MA, Scheiber A, Assa’ad A, Pongracic J, Spergel JM, Tam J, Tilles S, Wang J, Galli SJ, Desai M, Nadeau KC (2018) Eliciting dose and safety outcomes from a large dataset of standardized multiple food challenges. Front Immunol 21(9):2057. https://doi.org/10.3389/fimmu.2018.02057

    Article  CAS  Google Scholar 

  202. Zhao W, Ho HE, Bunyavanich S (2019) The gut microbiome in food allergy. Ann Allergy Asthma Immunol 122(3):276–282. https://doi.org/10.1016/j.anai.2018.12.012

    Article  CAS  PubMed  Google Scholar 

  203. Shu SA, Yuen AWT, Woo E, Chu KH, Kwan HS, Yang GX, Yang Y, Leung PSC (2019) Microbiota and food allergy. Clin Rev Allergy Immunol 57(1):83–97. https://doi.org/10.1007/s12016-018-8723-y

    Article  CAS  PubMed  Google Scholar 

  204. Canani RB, Paparo L, Nocerino R, Di Scala C, Gatta GD, Maddalena Y, Buono A, Bruno C, Voto L, Ercolini D (2019) Gut microbiome as target for innovative strategies against food allergy. Front Immunol 10:19. https://doi.org/10.3389/fimmu.2019.00191

    Article  CAS  Google Scholar 

  205. Wesemann DR, Nagler CR (2016) The microbiome, timing, and barrier function in the context of allergic disease. Immunity 44(4):728–738. https://doi.org/10.1016/j.immuni.2016.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. D’Auria E, Abrahams M, Zuccotti GV, Venter C (2019) Personalized nutrition approach in food allergy: is it prime time yet? Nutrients 11(2):359. https://doi.org/10.3390/nu11020359

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

I sincerely appreciate Professor Bor-Luen Chiang, who encourages me to write this review article and he has always served as a mentor to me in the field of allergy. I would like to express my deep gratitude to Professor Motohiro Ebisawa, who gave me the opportunity to learn about the field of food allergy, as well as the staff members in the Department of Allergy, Clinical Research Center for Allergology and Rheumatology in Sagamihara National Hospital, for their kindness and teaching. I would give my heartfelt thanks to Dr. Ichiro Nomura for his permission to use and modify the figure. I also give my thanks to Dr. Chun-Min Kang for the correction of tables and figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Hui Lin.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

No informed consent was required to prepare the manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, LJ., Mu, SC., Lin, MI. et al. Clinical Manifestations of Pediatric Food Allergy: a Contemporary Review. Clinic Rev Allerg Immunol 62, 180–199 (2022). https://doi.org/10.1007/s12016-021-08895-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-021-08895-w

Keywords

Navigation