Skip to main content

Advertisement

Log in

Neuroinflammation Mediates Faster Brachial Plexus Regeneration in Subjects with Cerebral Injury

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Our previous investigation suggested that faster seventh cervical nerve (C7) regeneration occurs in patients with cerebral injury undergoing contralateral C7 transfer. This finding needed further verification, and the mechanism remained largely unknown. Here, Tinel’s test revealed faster C7 regeneration in patients with cerebral injury, which was further confirmed in mice by electrophysiological recordings and histological analysis. Furthermore, we identified an altered systemic inflammatory response that led to the transformation of macrophage polarization as a mechanism underlying the increased nerve regeneration in patients with cerebral injury. In mice, we showed that, as a contributing factor, serum amyloid protein A1 (SAA1) promoted C7 regeneration and interfered with macrophage polarization in vivo. Our results indicate that altered inflammation promotes the regenerative capacity of the C7 nerve by altering macrophage behavior. SAA1 may be a therapeutic target to improve the recovery of injured peripheral nerves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Martyn CN, Hughes RA. Epidemiology of peripheral neuropathy. J Neurol Neurosurg Psychiatry 1997, 62: 310–318.

    Article  CAS  Google Scholar 

  2. Deumens R, Bozkurt A, Meek MF, Marcus MAE, Joosten EAJ, Weis J. Repairing injured peripheral nerves: Bridging the gap. Prog Neurobiol 2010, 92: 245–276.

    Article  Google Scholar 

  3. Novak CB, Anastakis DJ, Beaton DE, Katz J. Patient-reported outcome after peripheral nerve injury. J Hand Surg Am 2009, 34: 281–287.

    Article  Google Scholar 

  4. Zheng MX, Hua XY, Feng JT, Li T, Lu YC, Shen YD, et al. Trial of contralateral seventh cervical nerve transfer for spastic arm paralysis. N Engl J Med 2018, 378: 22–34.

    Article  Google Scholar 

  5. Spinner RJ, Shin AY, Bishop AT. Rewiring to regain function in patients with spastic hemiplegia. N Engl J Med 2018, 378: 83–84.

    Article  Google Scholar 

  6. Yu H, Wang YS, Zeng XD. Contralateral cervical nerve transfer for arm paralysis. N Engl J Med 2018, 378: 1460.

    Article  Google Scholar 

  7. Wang W, Gao J, Na L, Jiang HT, Xue JF, Yang ZJ, et al. Craniocerebral injury promotes the repair of peripheral nerve injury. Neural Regen Res 2014, 9: 1703–1708.

    Article  Google Scholar 

  8. Zigmond RE, Echevarria FD. Macrophage biology in the peripheral nervous system after injury. Prog Neurobiol 2019, 173: 102–121.

    Article  CAS  Google Scholar 

  9. Cattin AL, Burden JJ, van Emmenis L, MacKenzie FE, Hoving JJ, Garcia Calavia N, et al. Macrophage-induced blood vessels guide schwann cell-mediated regeneration of peripheral nerves. Cell 2015, 162: 1127–1139.

    Article  CAS  Google Scholar 

  10. Mokarram N, Merchant A, Mukhatyar V, Patel G, Bellamkonda RV. Effect of modulating macrophage phenotype on peripheral nerve repair. Biomaterials 2012, 33: 8793–8801.

    Article  CAS  Google Scholar 

  11. Uhlar CM, Burgess CJ, Sharp PM, Whitehead AS. Evolution of the serum amyloid A (SAA) protein superfamily. Genomics 1994, 19: 228–235.

    Article  CAS  Google Scholar 

  12. Urieli-Shoval S, Linke RP, Matzner Y. Expression and function of serum amyloid A, a major acute-phase protein, in normal and disease states. Curr Opin Hematol 2000, 7: 64–69.

    Article  CAS  Google Scholar 

  13. He RL, Zhou J, Hanson CZ, Chen J, Cheng N, Ye RD. Serum amyloid A induces G-CSF expression and neutrophilia via Toll-like receptor 2. Blood 2009, 113: 429–437.

    Article  CAS  Google Scholar 

  14. De Santo C, Arscott R, Booth S, Karydis I, Karydis I, Jones M, et al. Invariant NKT cells modulate the suppressive activity of IL-10-secreting neutrophils differentiated with serum amyloid A. Nat Immunol 2010, 11: 1039–1046.

    Article  Google Scholar 

  15. Sack GH Jr. Serum amyloid A (SAA) proteins. Subcellular Biochemistry. Cham: Springer International Publishing, 2020: 421–436.

  16. Wang M, Li ZY, Xu WD, Hua XY, Xu JG, Gu YD. Sensory restoration in cortical level after a contralateral C7 nerve transfer to an injured arm in rats. Neurosurgery 2010, 67: 136–143 (discussion 143).

    Article  Google Scholar 

  17. Jiang S, Li ZY, Hua XY, Xu WD, Xu JG, Gu YD. Reorganization in motor cortex after brachial plexus avulsion injury and repair with the contralateral C7 root transfer in rats. Microsurgery 2010, 30: 314–320.

    Article  Google Scholar 

  18. Zheng H, Zhang Z, Jiang S, Yan B, Shi X, Xie Y, et al. A shape-memory and spiral light-emitting device for precise multisite stimulation of nerve bundles. Nat Commun 2019, 10: 2790.

    Article  Google Scholar 

  19. Leavy A, Jimenez Mateos EM. Perinatal brain injury and inflammation: Lessons from experimental murine models. Cells 2020, 9: E2640.

    Article  Google Scholar 

  20. Corps KN, Roth TL, McGavern DB. Inflammation and neuroprotection in traumatic brain injury. JAMA Neurol 2015, 72: 355–362.

    Article  Google Scholar 

  21. Liu Y, Zhou LJ, Wang J, Li D, Ren WJ, Peng JY, et al. TNF-α differentially regulates synaptic plasticity in the Hippocampus and spinal cord by microglia-dependent mechanisms after peripheral nerve injury. J Neurosci 2017, 37: 871–881.

    Article  CAS  Google Scholar 

  22. Davis KD, Taylor KS, Anastakis DJ. Nerve injury triggers changes in the brain. Neuroscientist 2011, 17: 407–422.

    Article  Google Scholar 

  23. Rusanescu G, Mao JR. Peripheral nerve injury induces adult brain neurogenesis and remodelling. J Cell Mol Med 2017, 21: 299–314.

    Article  CAS  Google Scholar 

  24. Mollahosseini M, Ahmadirad H, Goujani R, Khorramdelazad H. The association between traumatic brain injury and accelerated fracture healing: A study on the effects of growth factors and cytokines. J Mol Neurosci 2021, 71: 162–168.

    Article  CAS  Google Scholar 

  25. Hofman M, Koopmans G, Kobbe P, Poeze M, Andruszkow H, Brink PR, et al. Improved fracture healing in patients with concomitant traumatic brain injury: Proven or not? Mediators Inflamm 2015, 2015: 204842.

    Article  Google Scholar 

  26. Jessen KR, Mirsky R. The repair Schwann cell and its function in regenerating nerves. J Physiol 2016, 594: 3521–3531.

    Article  CAS  Google Scholar 

  27. Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 2009, 29: 13435–13444.

    Article  CAS  Google Scholar 

  28. Lv D, Zhou LJ, Zheng XY, Hu YC. Sustained release of collagen VI potentiates sciatic nerve regeneration by modulating macrophage phenotype. Eur J Neurosci 2017, 45: 1258–1267.

    Article  Google Scholar 

  29. Li Y, Cai L, Wang H, Wu P, Gu W, Chen Y, et al. Pleiotropic regulation of macrophage polarization and tumorigenesis by formyl peptide receptor-2. Oncogene 2011, 30: 3887–3899.

    Article  CAS  Google Scholar 

  30. Sun L, Zhou HB, Zhu ZY, Yan Q, Wang LL, Liang Q, et al. Ex vivo and in vitro effect of serum amyloid a in the induction of macrophage M2 markers and efferocytosis of apoptotic neutrophils. J Immunol 2015, 194: 4891–4900.

    Article  CAS  Google Scholar 

  31. Hikawa N, Takenaka T. Myelin-stimulated macrophages release neurotrophic factors for adult dorsal root ganglion neurons in culture. Cell Mol Neurobiol 1996, 16: 517–528.

    Article  CAS  Google Scholar 

  32. Yin YQ, Cui Q, Gilbert HY, Yang Y, Yang ZY, Berlinicke C, et al. Oncomodulin links inflammation to optic nerve regeneration. Proc Natl Acad Sci U S A 2009, 106: 19587–19592.

    Article  CAS  Google Scholar 

  33. Qin C, Zhou LQ, Ma XT, Hu ZW, Yang S, Chen M, et al. Dual functions of microglia in ischemic stroke. Neurosci Bull 2019, 35: 921–933.

    Article  Google Scholar 

  34. He LZ, Marneros AG. Doxycycline inhibits polarization of macrophages to the proangiogenic M2-type and subsequent neovascularization. J Biol Chem 2014, 289: 8019–8028.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Funds for Distinguished Young Scientists (81525009), the National Natural Science Foundation of China (81830063, 81801363, and 81901419), the Priority Among Priorities of Shanghai Municipal Clinical Medicine Center (2017ZZ01006), the National Key R&D Program of China (2017YFC0840100 and 2017YFC0840106), the Technology Innovation Program of Shanghai Science and Technology Committee, China (18411950100), China Postdoctoral Science Foundation (2019M661369 and 2020T130110), and a Research Project Funded by Shanghai Health and Family Planning Commission, China (20184Y0111 and 201640176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendong Xu.

Ethics declarations

Conflict of interest

The authors claim that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, F., Wang, G., Li, T. et al. Neuroinflammation Mediates Faster Brachial Plexus Regeneration in Subjects with Cerebral Injury. Neurosci. Bull. 37, 1542–1554 (2021). https://doi.org/10.1007/s12264-021-00769-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-021-00769-7

Keywords

Navigation