Skip to main content
Log in

G1-like PB2 gene improves virus replication and competitive advantage of H9N2 virus

  • Original Paper
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

H9N2 subtype avian influenza virus has dramatically evolved and undergone extensive reassortment since its emergence in early 1990s in China. The genotype S (G57), emerging in 2007 with the substitution of F98-like PB2 and M gene by G1-like ones, has become the overwhelming predominant genotype for the past 11 years since 2010. Here, we found that virus with G1-like PB2 were more efficient in protein expression and in infectious virus production than that with F98-like PB2 gene. By coinfected MDCK cells with the reassortant virus, more survival opportunity for viruses with G1-like PB2 than that of F/98-like was observed. Besides, in animal experiments, we found that the G1-like PB2 increases virus infectivity, replication, and virus shedding of H9N2 in chickens. Our results suggested that the substitution of G1-like PB2 play important role in promoting the fitness of genotype S H9N2 virus in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated and analyses during the current study are available from the corresponding author.

References

  1. Huang Y, Hu B, Wen X, Cao S, Gavrilov BK, Du Q, Khan MI, Zhang X (2010) Diversified reassortant H9N2 avian influenza viruses in chicken flocks in northern and eastern China. Virus Res 151:26–32. https://doi.org/10.1016/j.virusres.2010.03.010

    Article  CAS  PubMed  Google Scholar 

  2. Gu M, Xu L, Wang X, Liu X (2017) Current situation of H9N2 subtype avian influenza in China. Vet Res 48:49. https://doi.org/10.1186/s13567-017-0453-2

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhang Y, Yin Y, Bi Y, Wang S, Xu S, Wang J, Zhou S, Sun T, Yoon KJ (2012) Molecular and antigenic characterization of H9N2 avian influenza virus isolates from chicken flocks between 1998 and 2007 in China. Vet Microbiol 156:285–293. https://doi.org/10.1016/j.vetmic.2011.11.014

    Article  PubMed  Google Scholar 

  4. Liu YF, Lai HZ, Li L, Liu YP, Zhang WY, Gao R, Huang WK, Luo QF, Gao Y, Luo Q, Xie XY, Xu JH, Chen RA (2016) Endemic variation of H9N2 avian influenza virus in China. Avian Dis 60:817–825. https://doi.org/10.1637/11452-061616-Reg

    Article  PubMed  Google Scholar 

  5. Li C, Wang S, Bing G, Carter RA, Wang Z, Wang J, Wang C, Wang L, Wu G, Webster RG, Wang Y, Sun H, Sun Y, Liu J, Pu J (2017) Genetic evolution of influenza H9N2 viruses isolated from various hosts in China from 1994 to 2013. Emerg Microbes Infect 6:e106. https://doi.org/10.1038/emi.2017.94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu KM, Smith GJ, Bahl J, Duan L, Tai H, Vijaykrishna D, Wang J, Zhang JX, Li KS, Fan XH, Webster RG, Chen H, Peiris JS, Guan Y (2007) The genesis and evolution of H9N2 influenza viruses in poultry from southern China, 2000 to 2005. J Virol 81:10389–10401. https://doi.org/10.1128/JVI.00979-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gu M, Chen H, Li Q, Huang J, Zhao M, Gu X, Jiang K, Wang X, Peng D, Liu X (2014) Enzootic genotype S of H9N2 avian influenza viruses donates internal genes to emerging zoonotic influenza viruses in China. Vet Microbiol 174:309–315. https://doi.org/10.1016/j.vetmic.2014.09.029

    Article  CAS  PubMed  Google Scholar 

  8. Pu J, Sun H, Qu Y, Wang C, Gao W, Zhu J, Sun Y, Bi Y, Huang Y, Chang KC, Cui J, Liu J (2017) M gene reassortment in H9N2 influenza virus promotes early infection and replication: contribution to rising virus prevalence in chickens in China. J Virol. https://doi.org/10.1128/JVI.02055-16

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hao X, Wang X, Hu J, Gu M, Wang J, Deng Y, Jiang D, He D, Xu H, Yang Y, Hu Z, Chen S, Hu S, Liu X, Shang S, Peng D, Jiao X, Liu X (2019) The PB2 and M genes of genotype S H9N2 virus contribute to the enhanced fitness of H5Nx and H7N9 avian influenza viruses in chickens. Virology 535:218–226. https://doi.org/10.1016/j.virol.2019.07.001

    Article  CAS  PubMed  Google Scholar 

  10. Hao X, Hu J, Wang X, Gu M, Wang J, Liu D, Gao Z, Chen Y, Gao R, Li X, Hu Z, Hu S, Liu X, Peng D, Jiao X, Liu X (2020) The PB2 and M genes are critical for the superiority of genotype S H9N2 virus to genotype H in optimizing viral fitness of H5Nx and H7N9 avian influenza viruses in mice. Transbound Emerg Dis 67:758–768. https://doi.org/10.1111/tbed.13395

    Article  CAS  PubMed  Google Scholar 

  11. Xue J, Chambers BS, Hensley SE, Lopez CB (2016) Propagation and characterization of influenza virus stocks that lack high levels of defective viral genomes and hemagglutinin mutations. Front Microbiol 7:326. https://doi.org/10.3389/fmicb.2016.00326

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bolte H, Rosu ME, Hagelauer E, Garcia-Sastre A, Schwemmle M (2019) Packaging of the influenza virus genome is governed by a plastic network of RNA- and nucleoprotein-mediated interactions. J Virol. https://doi.org/10.1128/JVI.01861-18

    Article  PubMed  PubMed Central  Google Scholar 

  13. Su WC, Yu WY, Huang SH, Lai MMC (2018) Ubiquitination of the cytoplasmic domain of influenza a virus M2 protein is crucial for production of infectious virus particles. J Virol. https://doi.org/10.1128/JVI.01972-17

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2013) Corrigendum: Global quantification of mammalian gene expression control. Nature 495:126–127. https://doi.org/10.1038/nature11848

    Article  CAS  PubMed  Google Scholar 

  15. Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473:337–342. https://doi.org/10.1038/nature10098

    Article  CAS  PubMed  Google Scholar 

  16. Vogel C, Abreu Rde S, Ko D, Le SY, Shapiro BA, Burns SC, Sandhu D, Boutz DR, Marcotte EM, Penalva LO (2010) Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol Syst Biol 6:400. https://doi.org/10.1038/msb.2010.59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou Z, Dang Y, Zhou M, Li L, Yu CH, Fu J, Chen S, Liu Y (2016) Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proc Natl Acad Sci U S A 113:E6117–E6125. https://doi.org/10.1073/pnas.1606724113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Salvatore M, Basler CF, Parisien JP, Horvath CM, Bourmakina S, Zheng H, Muster T, Palese P, Garcia-Sastre A (2002) Effects of influenza A virus NS1 protein on protein expression: the NS1 protein enhances translation and is not required for shutoff of host protein synthesis. J Virol 76:1206–1212. https://doi.org/10.1128/jvi.76.3.1206-1212.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Buehler J, Navi D, Lorusso A, Vincent A, Lager K, Miller CL (2013) Influenza A virus PB1-F2 protein expression is regulated in a strain-specific manner by sequences located downstream of the PB1-F2 initiation codon. J Virol 87:10687–10699. https://doi.org/10.1128/JVI.01520-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fonville JM, Marshall N, Tao H, Steel J, Lowen AC (2015) Influenza virus reassortment is enhanced by semi-infectious particles but can be suppressed by defective interfering particles. PLoS Pathog 11:e1005204. https://doi.org/10.1371/journal.ppat.1005204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brooke CB, Ince WL, Wrammert J, Ahmed R, Wilson PC, Bennink JR, Yewdell JW (2013) Most influenza a virions fail to express at least one essential viral protein. J Virol 87:3155–3162. https://doi.org/10.1128/JVI.02284-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ngunjiri JM, Buchek GM, Mohni KN, Sekellick MJ, Marcus PI (2013) Influenza virus subpopulations: exchange of lethal H5N1 virus NS for H1N1 virus NS triggers de novo generation of defective-interfering particles and enhances interferon-inducing particle efficiency. J Interferon Cytokine Res 33:99–107. https://doi.org/10.1089/jir.2012.0070

    Article  CAS  PubMed  Google Scholar 

  23. Shafiuddin M, Boon ACM (2019) RNA sequence features are at the core of influenza a virus genome packaging. J Mol Biol 431:4217–4228. https://doi.org/10.1016/j.jmb.2019.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Noton SL, Simpson-Holley M, Medcalf E, Wise HM, Hutchinson EC, McCauley JW, Digard P (2009) Studies of an influenza A virus temperature-sensitive mutant identify a late role for NP in the formation of infectious virions. J Virol 83:562–571. https://doi.org/10.1128/JVI.01424-08

    Article  CAS  PubMed  Google Scholar 

  25. Vahey MD, Fletcher DA (2020) Low-fidelity assembly of influenza A virus promotes escape from host cells. Cell 180:205. https://doi.org/10.1016/j.cell.2019.12.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. White MC, Steel J, Lowen AC (2017) Heterologous packaging signals on segment 4, but not segment 6 or segment 8, limit influenza A virus reassortment. J Virol. https://doi.org/10.1128/JVI.00195-17

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bustin SA, Benes V, Nolan T, Pfaffl MW (2005) Quantitative real-time RT-PCR–a perspective. J Mol Endocrinol 34:597–601. https://doi.org/10.1677/jme.1.01755

    Article  CAS  PubMed  Google Scholar 

  28. Zhong L, Wang X, Li Q, Liu D, Chen H, Zhao M, Gu X, He L, Liu X, Gu M, Peng D, Liu X (2014) Molecular mechanism of the airborne transmissibility of H9N2 avian influenza A viruses in chickens. J Virol 88:9568–9578. https://doi.org/10.1128/JVI.00943-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hoffmann E, Neumann G, Kawaoka Y, Hobom G, Webster RG (2000) A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci USA 97:6108–6113. https://doi.org/10.1073/pnas.100133697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McAuley JL, Zhang K, McCullers JA (2010) The effects of influenza A virus PB1-F2 protein on polymerase activity are strain specific and do not impact pathogenesis. J Virol 84:558–564. https://doi.org/10.1128/JVI.01785-09

    Article  CAS  PubMed  Google Scholar 

  31. Marjuki H, Yen HL, Franks J, Webster RG, Pleschka S, Hoffmann E (2007) Higher polymerase activity of a human influenza virus enhances activation of the hemagglutinin-induced Raf/MEK/ERK signal cascade. Virol J 4:134. https://doi.org/10.1186/1743-422X-4-134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Salomon R, Franks J, Govorkova EA, Ilyushina NA, Yen HL, Hulse-Post DJ, Humberd J, Trichet M, Rehg JE, Webby RJ, Webster RG, Hoffmann E (2006) The polymerase complex genes contribute to the high virulence of the human H5N1 influenza virus isolate A/Vietnam/1203/04. J Exp Med 203:689–697. https://doi.org/10.1084/jem.20051938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Reed LJ, Muench H (1938) A simple method of estimating fifty per cent endpoints. Am J Epidemiol 27:493–497. https://doi.org/10.1093/oxfordjournals.aje.a118408

    Article  Google Scholar 

Download references

Acknowledgements

Not Applicable.

Funding

This work was supported by the Jiangsu Provincial Natural Science Fund for Excellent Young Scholars (BK20170068), the National Natural Science Foundation of China (31702245,31772755), the National Key Research and Development project of China (2016YFD0500202), the Earmarked fund for China Agriculture Research System (CARS-40), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Jiangsu Qinglan project, and the “high-end talent support program” of Yangzhou University. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

XL and XL conceived of or designed study; XL, SQ, YZ, RG, and JM performed research; MG, XW, JH, SH, and XL analyzed data. XL, ZG, KL, SC, and DP wrote the paper. All of the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Xiufan Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Human and animal rights

This study was carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the Ministry of Science and Technology of the People's Republic of China. All animal experiments were approved by the Jiangsu Administrative Committee for Laboratory Animals (Permission number: SYXK-SU-2017-0007) and by the Institutional Biosafety Committee of Yangzhou University and complied with the guidelines of Jiangsu laboratory animal welfare and ethics of Jiangsu Administrative Committee of Laboratory Animals.

Informed consent

The present study did not involve any human subject and therefore, no need of informed consent.

Additional information

Edited by Zhen F. Fu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Qiao, S., Zhao, Y. et al. G1-like PB2 gene improves virus replication and competitive advantage of H9N2 virus. Virus Genes 57, 521–528 (2021). https://doi.org/10.1007/s11262-021-01870-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-021-01870-9

Keywords

Navigation