Skip to main content
Log in

Aggregation-Induced Emission and Temperature-Dependent Luminescence of Potassium Perylenetetracarboxylate

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Investigation of temperature-dependent photoluminescent properties of potassium perylene-3,4,9,10-tetracarboxylate (K4PTC), a molecule with no internal rotational degrees of freedom, shows aggregation-induced enhanced emission at room temperature. The different excitonic emission processes are dependent of temperature, some of which quenches in an intermediate temperature range (from 50 to 150 K). The exciton excited states switching phenomenon from "dark" to "bright" states is observed and its explained using Herzberg-Teller selection rule. K4PTC is a molecule comparable to the size of its precursor, perylene-3,4,9,10-tetracarboxylic anhydride (PTCDA) and is highly soluble in water, contrary to PTCDA, which is poorly soluble in most solvents. Powder x-ray diffraction measurements corroborate a lesser degree of ordering of bulk K4PTC compared to bulk PTCDA. The green luminescent molecule could, in principle, be used as a biomarker, or in photodynamic therapy, if further studies show relatively low toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Authors can confirm that all relevant data are included in the article and/or its supplementary information files.

References

  1. Duan HC, Yang JL, Fu L et al (2015) Interface modification of organic photovoltaics by combining molybdenum oxide (MoOx) and molecular template layer. Thin Solid Films 574:146–151. https://doi.org/10.1016/j.tsf.2014.12.005

    Article  CAS  Google Scholar 

  2. Cui C, Yang Z, Hu X et al (2017) Organic semiconducting nanoparticles as efficient photoacoustic agents for lightening early thrombus and monitoring thrombolysis in living mice. ACS Nano 11(3):3298–3310. https://doi.org/10.1021/acsnano.7b00594

    Article  PubMed  CAS  Google Scholar 

  3. Pereira-Andrade E, Brum SM, Policarpo EMC et al (2020) All-perylene-derivative for white light emitting diodes. Phys Chem Chem Phys 22(36):20744–20750. https://doi.org/10.1039/d0cp02718a

    Article  PubMed  CAS  Google Scholar 

  4. He W, Zang H, Cai SH et al (2020) Intercalation and hybrid heterostructure integration of two-dimensional atomic crystals with functional organic semiconductor molecules. Nano Res 13(11):2917–2924. https://doi.org/10.1007/s12274-020-2948-9

    Article  CAS  Google Scholar 

  5. Seco JM, Sebastian ES, Cepeda J et al (2018) A potassium metal-organic framework based on perylene-3,4,9,10-tetracarboxylate as sensing layer for humidity actuators. Sci Rep. https://doi.org/10.1038/s41598-018-32810-7

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen YN, Luo W, Carter M et al (2015) Organic electrode for non-aqueous potassium-ion batteries. Nano Energy 18:205–211. https://doi.org/10.1016/j.nanoen.2015.10.015

    Article  CAS  Google Scholar 

  7. Wang C, Tang W, Yao ZY, Cao B, Fan C (2019) Potassium perylene-tetracarboxylate with two-electron redox behaviors as a highly stable organic anode for K-ion batteries. Chem Commun 55(12):1801–1804. https://doi.org/10.1039/c8cc09596e

    Article  CAS  Google Scholar 

  8. Mukazhanova A, Trerayapiwat KJ, Mazaheripour A et al (2020) Accurate first-principles calculation of the vibronic spectrum of stacked perylene tetracarboxylic acid diimides. J Phys Chem A 124(16):3055–3063. https://doi.org/10.1021/acs.jpca.9b08117

    Article  PubMed  CAS  Google Scholar 

  9. Kobitski AY, Scholz R, Zahn DRT, Wagner HP (2003) Time-resolved photoluminescence study of excitons in alpha-PTCDA as a function of temperature. Phys Rev B. https://doi.org/10.1103/PhysRevB.68.155201

    Article  Google Scholar 

  10. Wagner HP, DeSilva A, Kampen TU (2004) Exciton emission in PTCDA films and PTCDA/Alq(3) multilayers. Phys Rev B. https://doi.org/10.1103/PhysRevB.70.235201

    Article  Google Scholar 

  11. Ma H, Chen YF, Wang H et al (2017) Charge-transfer effect on surface-enhanced Raman spectroscopy in Ag/PTCA: Herzberg-teller selection rules. J Phys Chem C 121(46):25788–25794. https://doi.org/10.1021/acs.jpcc.7b07281

    Article  CAS  Google Scholar 

  12. Yin PA, Wan Q, Niu YL et al (2020) Theoretical and experimental investigations on the aggregation-enhanced emission from dark state: vibronic coupling effect. Adv Electron Mater. https://doi.org/10.1002/aelm.202000255

    Article  Google Scholar 

  13. Herzberg G, Teller E (1933) Schwingungsstruktur der Elektronenübergänge bei mehratomigen Molekülen. Zeitschrift für Physikalische Chemie, 21 B(1):410–446. https://doi.org/10.1515/zpch-1933-2136

  14. Li J, Lin CK, Li XY, Zhu CY, Lin SH (2010) Symmetry forbidden vibronic spectra and internal conversion in benzene. Phys Chem Chem Phys 12(45):14967–14976. https://doi.org/10.1039/c0cp00120a

    Article  PubMed  CAS  Google Scholar 

  15. Bossi A, Arnaboldi S, Castellano C, Martinazzo R, Cauteruccio S (2020) Benzodithienyl silanes for organic electronics: AIE solid-state blue emitters and high triplet energy charge-transport materials. Adv Opt Mater. https://doi.org/10.1002/adom.202001018

    Article  Google Scholar 

  16. Chen Z, Tang JH, Chen WZ et al (2019) Temperature- and mechanical-force-responsive self-assembled rhomboidal metallacycle. Organometallics 38(21):4244–4249. https://doi.org/10.1021/acs.organomet.9b00544

    Article  CAS  Google Scholar 

  17. Oueslati I, Paixao JA, Rodrigues VH et al (2014) Modulating the self-assembly of calix 4 azacrowns to design materials with improved emission and stimuli-responsive behavior. J Phys Chem C 118(24):13118–13125. https://doi.org/10.1021/jp5039392

    Article  CAS  Google Scholar 

  18. Wang H, Xie LS, Peng Q et al (2014) Novel thermally activated delayed fluorescence materials-thioxanthone derivatives and their applications for highly efficient OLEDs. Adv Mater 26(30):5198–5204. https://doi.org/10.1002/adma.201401393

    Article  PubMed  CAS  Google Scholar 

  19. Wong MY, Zysman-Colman E (2017) Purely organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Adv Mater. https://doi.org/10.1002/adma.201605444

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yang ZY, Mao Z, Xie ZL et al (2017) Recent advances in organic thermally activated delayed fluorescence materials. Chem Soc Rev 46(3):915–1016. https://doi.org/10.1039/c6cs00368k

    Article  PubMed  CAS  Google Scholar 

  21. Kathiravan A, Sundaravel K, Jaccob M et al (2014) Pyrene schiff base: photophysics, aggregation induced emission, and antimicrobial properties. J Phys Chem B 118(47):13573–13581. https://doi.org/10.1021/jp509697n

    Article  PubMed  CAS  Google Scholar 

  22. Li XQ, Zhang X, Ghosh S, Wurthner F (2008) Highly fluorescent lyotropic mesophases and organogels based on j-aggregates of core-twisted perylene bisimide dyes. Chem Eur J 14(27):8074–8078. https://doi.org/10.1002/chem.200800915

    Article  PubMed  CAS  Google Scholar 

  23. Che YK, Yang XM, Balakrishnan K, Zuo JM, Zang L (2009) Highly polarized and self-waveguided emission from single-crystalline organic nanobelts. Chem Mater 21(13):2930–2934. https://doi.org/10.1021/cm9007409

    Article  CAS  Google Scholar 

  24. Yagai S, Seki T, Karatsu T, Kitamura A, Wurthner F (2008) Transformation from H- to J-aggregated perylene bisimide dyes by complexation with cyanurates. Angew Chem Int Ed 47(18):3367–3371. https://doi.org/10.1002/anie.200705385

    Article  CAS  Google Scholar 

  25. Fischer MKR, Kaiser TE, Wurthner F, Bauerle P (2009) Dendritic oligothiophene-perylene bisimide hybrids: synthesis, optical and electrochemical properties. J Mater Chem 19(8):1129–1141. https://doi.org/10.1039/b817158k

    Article  CAS  Google Scholar 

  26. Qu JQ, Zhang JY, Grimsdale AC et al (2004) Dendronized perylene diimide emitters: synthesis, luminescence, and electron and energy transfer studies. Macromolecules 37(22):8297–8306. https://doi.org/10.1021/ma0494131

    Article  CAS  Google Scholar 

  27. Huang C, Barlow S, Marder SR (2011) Perylene-3,4,9,10-tetracarboxylic Acid Diimides: Synthesis, Physical Properties, and Use in Organic Electronics. J Org Chem 76(8):2386–2407. https://doi.org/10.1021/jo2001963

    Article  PubMed  CAS  Google Scholar 

  28. Mizuguchi J, Tojo K (2002) Electronic structure of perylene pigments as viewed from the crystal structure and excitonic interactions. J Phys Chem B 106(4):767–772. https://doi.org/10.1021/jp012909p

    Article  CAS  Google Scholar 

  29. Dvorak M, Muller M, Knoblauch T et al (2012) Spectroscopy of 3, 4, 9, 10-perylenetetracarboxylic dianhydride (PTCDA) attached to rare gas samples: clusters vs. bulk matrices. II. Fluorescence emission spectroscopy. J Chem Phys 137(16):6. https://doi.org/10.1063/1.4759445

    Article  CAS  Google Scholar 

  30. Sun BL, Xu X, Zhou GD et al (2020) Observation of strong J-aggregate light emission in monolayer molecular crystal on hexagonal boron nitride. J Phys Chem A 124(37):7340–7345. https://doi.org/10.1021/acs.jpca.0c03709

    Article  PubMed  CAS  Google Scholar 

  31. Murthy NS, Dantas SO, Iqbal Z, Baughman RH (2001) X-ray diffraction evidence for the formation of a discotic phase during graphitization. Carbon 39(6):809–813. https://doi.org/10.1016/s0008-6223(00)00203-7

    Article  CAS  Google Scholar 

  32. Cui DM, Tian D, Chen SS, Yuan LJ (2016) Graphene wrapped 3,4,9,10-perylenetetracarboxylic dianhydride as a high-performance organic cathode for lithium ion batteries. J Mater Chem A 4(23):9177–9183. https://doi.org/10.1039/c6ta02880b

    Article  CAS  Google Scholar 

  33. Nayak PK (2013) Exciton binding energy in small organic conjugated molecule. Synth Met 174:42–45. https://doi.org/10.1016/j.synthmet.2013.04.010

    Article  CAS  Google Scholar 

  34. Lin YL, Chen G, Zhao LF, Yuan WZ, Zhang YM, Tang BZ (2015) Diethylamino functionalized tetraphenylethenes: structural and electronic modulation of photophysical properties, implication for the CIE mechanism and application to cell imaging. J Mater Chem C 3(1):112–120. https://doi.org/10.1039/c4tc02161d

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank CNPq, CAPES (PROEX), and FAPEMIG. We thank LabCri (Laboratório de Cristalografia da UFMG) for letting us use its facilities. We also would like to thank Programa Cátedras Franco-Brasileiras na UFMG (004/2018).

Funding

This work was funded by CNPq, CAPES (PROEX), and FAPEMIG.

Author information

Authors and Affiliations

Authors

Contributions

All the authors made substantial contribution while preparing the manuscript.

Corresponding author

Correspondence to Gustavo de Almeida Magalhães Safar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical Approval

This article does not contain any studies with human or animal subjects.

Informed Consent

A statement regarding informed consent is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 785 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brum Martins, S., de Andrade, E.P., Gautam, S.K. et al. Aggregation-Induced Emission and Temperature-Dependent Luminescence of Potassium Perylenetetracarboxylate. J Fluoresc 31, 1855–1862 (2021). https://doi.org/10.1007/s10895-021-02810-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02810-4

Keywords

Navigation